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Abstract

Solutions to ever-larger structural optimization problems are desired.
However, computational resources are strained to meet this need. New meth-
ods will be required to solve ever larger problems. The present approaches
to solving large-scale problems involve approximations for the constraints of
structural optimization problems and/or decomposition of the problem into
multiple subproblems that can be solved in parallel. An area of game theory,
equilibrium programming (also know as non-cooperative game theory), can be
used to unify these existing approaches from a theoretical point of view (consid-
ering the existence and optimality of solutions), and be used as a framework for
the development of new methods for solving large-scale optimization problems.
Equilibrium programming theory is described, and existing design techniques
such as fully stressed design and constraint approximations are shown to fit
within its framework. Two new struct,ural design formulations are also derived.
The first new formulation is another approximation technique which is a gen-
eral updating scheme for the sensitivity derivatives of design constraints. The
second new formulation uses a substructure-based decomposition of the struc-
ture for analysis and sensitivity calculations. The new formulations are utilized
for problems ranging from a simple ten-bar truss to a 348 design-variable opti-
mization of a high-speed civil transport. Significant computational benefits of

the new formulations compared with a conventional method are demonstrated.
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Nomenclature

Column vectors are generally denoted by lower case symbols typed in boldface.
The notation 8f/0a for an arbitrary scalar f and a vector a = (ay,...,a,)7
denotes the gradient of scalar f with respect to vector a. This gradient is
expressed as a row vector (i.e., 0f/0a = (0f/0ay,...,0f/0a,)). The notation
Of /0a for arbitrary vectors a and f = (f1,..., fm)? denotes the gradient of
vector f with respect to vector a. This gradient is expressed as an m x n
matrix in which the component in column j of row ¢ is given by df;/0a;. The

h

notation f;; denotes the jt component of the vector f;.

a  update vector

cross-sectional area, sometimes (in formulation 4) the set
of 4-tuples used to define compatibility of substructures

>

vector of cross-sectional areas

s

matrices used to define compatible displacements at sub-
structure interfaces

g  vector of inequality constraint functions

0

Y unit vector with length of vector v and having unity for
the j’th entry

objective function in nonlinear programming
vector of external nodal forces
vector of equality constraint functions

constant of proportionality

e T

penalty coefficient used in penalized objective function P

viii
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Wi

X, Xis ii

Af) A'Uk:
AT

global stiffness matrix for a structural-response prob-
lem, augmented global stiffness matrix for a structural-
response subproblem (see equations (3.28) and (3.34))

number of substructures that would have rigid-body mo-
tions if separated from the rest of the structure, used in
formulation 4

number of EP subproblems, sometimes number of sub-
structures in formulation 4

matrix defining the substructure coordination problem
(see equations (3.29) and (3.36))

number of displacement degrees of freedom

vector of stress resultants within every element of the
structure

penalized objective function (see equation (4.2))
matrix containing substructure rigid-body modes

vector of nodal displacements from a structural-response
problem

vector of nodal displacements orthogonal to rigid-body
modes

vector of design variables for nonlinear programming, or
vector of structural-sizing design variables in equilibrium
programming structural-sizing subproblems

weights used in update subproblem (see statement (3.12))
weight of a structure

vectors of all design variables for equilibrium program-
ming, design variables of subproblem 4, and all design
variables except those from subproblem i, respectively

vector of rigid-body mode amplitudes
displacement value
difference quantities used in update equation (3.13)

temperature rise

X



vector of Lagrange multipliers for inequality constraints,
sometimes Lagrange multipliers for constraint on com-
patible substructure interface displacements

vector of Lagrange multipliers for equality constraints,
sometimes vector of Lagrange multipliers for constraint
on orthogonality of u nodal displacements with rigid-
body modes

vector of stresses within every element of a structure

Subscripts and Subscripts:

A

max
min

new, old

denotes an approximation of a function
denotes i'th equilibrium programming subproblem
denotes interface quantities in design formulation 4

denotes lower and upper bounds, used to denote move
limits

maximum

minimum

new and old values, respectively; used in defining update
subproblem (3.12)

denotes functional dependence on stress resultants
side constraints
transpose of a vector or matrix

denotes displacement constraints, or functional depen-
dence on displacements

denotes stress and local buckling constraints, or func-
tional dependence on stresses

denotes an equilibrium programming solution (i.e., the
equilibrium point), an optimal solution, active con-
straints, or Lagrange multipliers corresponding to active
constraints



Chapter 1

Introduction

Solutions to ever-larger structural optimization problems are needed as struc-
tural optimization procedures are applied to solve practical design problems
and the analysis models for these structures grow increasingly detailed and
complex. Current applications of structural optimization to large-scale design
problems require significant computational resources. New structural optimiza-
tion methods are required to solve ever-larger problems. The use of a gener-
alized theoretical framework for the development of structural optimization

methods is investigated in the present dissertation.

1.1 Background on Structural Synthesis

Nonlinear mathematical programming (NLP) is now extensively used for a type
of optimal structural design that is called structural sizing. The solution to a
NLP-based, structural-sizing design problem minimizes an objective function,
such as weight, and satisfies a set of design constraints, such as minimum gauge
and local stress limits. This solution is obtained varying a set of structural-
sizing design variables, such as skin thicknesses and stiffener heights, within
their allowable ranges. The original usage of NLP for structural sizing coupled

with finite element structural analyses was due to Schmit in 1960 (see [50] for a



description of the historical developments). Schmit called his resulting method
structural synthesis. The structural synthesis method had several advantages
over the state of the art at that time (i.e., fully stressed design methods and
simultaneous failure mode methods). These advantages include such features
as: 1) limits on member sizes were easily incorporated; 2) a true optimum design
could be found subject to multiple load cases; 3) numerous failure modes could
be considered simultaneously; and 4) objective functions other than weight
were possible. The disadvantage of the method was the large demand placed

on computational resources.

In the original structural synthesis approach, the structural analysis re-
quired to compute the design constraints was subordinate to the optimization
algorithm, and a structural analysis was performed for every change in the
values of the structural-sizing design variables in the design process. Thus,
the process was computationally expensive. Several methods for overcoming
this disadvantage such as the use of approximation techniques, reduction tech-
niques, and decomposition techniques were presaged as early as 1971 by Pope

and Schmit [40].

Approximation techniques are utilized to loosen the coupling of the
structural analysis from the structural optimization procedure. Computation-
ally efficient, approximate models for the dependence of the structural response
and the constraint functions on the design variables are developed from the
structural analysis and the sensitivity derivatives of the response. These ap-
proximate models are used in place of the full structural analysis and constraint
evaluation in the structural optimization procedure. After the structural op-

timization procedure converges, the approximate models for the structural re-



sponse are reformulated using the resulting set of design variables, and the cycle
is repeated until the variation of results between cycles is below a predefined
tolerance. The accuracy of using linear Taylor series approximate analyses was
evaluated by Storaasli and Sobieszczanski in [63] using a finite element model
of a subsonic transport fuselage section. However, Schmit and Farshi defined
the approximation concepts commonly used today in [45], and the further de-
velopment of these concepts by Schmit and Miura [48] significantly improved
the computational efficiency of NLP structural-sizing design methods. Many of
the numerous approximation techniques that have been developed are summa-
rized in [2]. Thus, approximation-based NLP structural-sizing design methods
are now well developed, and are implemented in several commercial structural

analysis codes.

Reduction techniques are utilized to reduce the size of a structural op-
timization problem to make it more tractable. In one approach, the original
set of design variables is replaced by a sum of fixed basis vectors for the design
variables (chosen by the user) multiplied by undetermined coefficients. If the
number of basis vectors is smaller than their length, these coefficients form a
new set of design variables that is smaller than the original set of design vari-
ables (see [39]). However, the best choice of basis vectors is not known a priors,
and the quality of the resulting design depends on the user’s skill in choosing
good basis vectors. In another reduction technique, the constraint functions
are combined into one or more cumulative constraint functions. This approach
can significantly reduce the number of constraints. Cumulative constraints may
make the adjoint sensitivity method more attractive by reducing the number of

constraints to a number significantly below the number of design variables ([19],



p. 267), and they are also utilized in some of the decomposition methods de-
scribed subsequently. The Kreisselmeier-Steinhauser (K-S) function described

in [27] is one example of a cumulative constraint function.

Another approach that has been investigated to improve the computa-
tional efficiency of structural sizing is the decomposition of the problem into a
number of smaller subproblems that can be analyzed in parallel. An excellent
summary of the different ways decomposition techniques are utilized to solve
engineering design problems is given by Barthelemy [5] where decomposition
methods are classified based on how the design variables are coupled through
the problem constraints. This classification technique is simiiar to the method
for classifying large linear programs ( [29], pp. 117 - 122). Decomposition tech-
niques become computationally advantageous if the overall problem can be
reformulated into subproblems having sets of design variables and constraints
that are nearly disjoint. In practice, there is usually some coupling between
the subproblems. If some design variables are common to the constraints of the
different subproblems, they are called coupling variables. If some constraints
depend on design variables from more than one subproblem, they are called
coupling constraints. In linear programming, problems with coupling variables,
but without coupling constraints, are called angular, and problems with cou-

pling constraints, but no coupling variables, are called dual-angular.

Some of the earliest descriptions of general processes for decomposition
of large systems into subsystems are given by Mesarovick, et al. in [32] for cer-
tain types of hierarchical systems. A hierarchical system can be decomposed
into a tree or “family” of subsystems in which the “children” subsystems at a

given level are independent of their “siblings” at the same level, and the cou-



pling between these sibling subsystems is through the “parent” subsystem. The
parent subsystem controls its children subsystems using a set of coordination
variables. Several methods of forming coordinable subproblems are described
in [32]. These methods ensure that when a solution to the decomposed prob-
lem is found, it is also a solution to the original problem. The hierarchical
decomposition methods of Mesarovick become feasible when the design vari-
ables of the problem can be grouped into sets that are only coupled through a
few constraint equations (i.e., when there is constraint coupling). One common
method for coordination when there is constraint coupling is that of goal coor-
dination. In goal coordination, the constraints in a subprobiem that have no
explicit dependence on the sibling subsystems are treated explicitly, while the
coupling constraint equations are multiplied by their Lagrange multipliers and
are added to the objective functions, forming a partial Lagrangian function.
The parent subsystem, which is the dual of the original problem, determines
the optimum value of these Lagrange multipliers. Because goal coordination is
essentially a primal-dual optimization method, the objective functions of the
child subsystems must be convex, or must be “convexified” [7] for the method
to yield satisfactory solutions [17]. This approach has been utilized for plastic

design problems by Kaneko and Ha in [23].

The most common decomposition approach for structures treats a struc-
ture in a hierarchical way with increasing levels of detail at each lower level
in the hierarchy. For example, a discrete region — commonly referred to as a
substructure — of a stiffened structure may be represented at an upper level in
the hierarchy by smeared stiffnesses, while the region is modeled with discrete

geometry at a lower level. The decomposition of a structure into substructures



to define optimization regions is described in this section. The decomposi-
tion of a structure into substructures for analysis and optimization purposes is

described in a subsequent chapter.

Two early approaches that utilized two levels of representation for sub-
structures and that performed searches in the lower-level design space are de-
scribed by Giles in [16] for wing substructures, and by Kirsch, et al. in [25] for
more general substructures. Schmit and Ramanathan [49] describe a two-level
approach in which optimization is used within both levels. The upper-level
subproblem utilizes weight as the objective function, and area (for trusses) or
smeared orthotropic layer thicknesses (for stiffened skins) as design variables.
The upper-level constraints are the side constraints (lower and upper limits)
on the design variables, displacement constraints, system buckling constraints,
and stress constraints. In the upper-level stress constraints, the compressive
allowable stress is the maximum of a fixed lower stress limit and of the local
buckling and crippling allowables that are determined from the lower-level de-
sign of the previous iteration. The lower-level subproblems utilize the discrete
geometry of substructures (such as stiffener blade height) as design variables,
and minimize the difference of the structural stiffness determined using the
lower-level design variables from the stiffness determined using the upper-level
design variables. The constraints at this level are discrete geometry side con-
straints, stress constraints, and local buckling and crippling constraints. At
convergence of the two-level approach, the stiffness of the structure is the same
whether it is determined by the upper-level or the lower-level design variables.
A generalization of this approach that allows for laminated composite struc-

tures is described by Schmit and Merhinfar in [47]. In these three two-level



approaches there is no coordination or direct coupling between the lower-level

designs of substructures, and the resulting designs are not necessarily optimal.

The linear decomposition method of Sobieski [58] is a widely investi-
gated hierarchical scheme applied to structural optimization that may approach
a locally optimal solution. (Although Kirsch [26] and Kirsch and Moses [24]
developed rigorous, substructure-based approaches for hierarchical decomposi-
tion of a structural optimization problem prior to the work of Sobieski, these
methods are not finite-element based, and have only been applied to simple
problems.) In the linear decomposition method, the cumulative constraint vi-
olation for the lower-level constraints of Schmit and Ramanathan is minimized
in each lower-level subproblem. The only explicit constraints in a lower-level
subproblem are equality constraints that ensure that the stiffness determined
using the lower-level design variables equals the structural stiffness determined
using the upper-level design variables. An optimum sensitivity analysis with
respect to the upper-level design variables, as described in references [4] and
[55], is performed for these lower-level, cumulative-constraint, objective func-
tions. At the upper level, the problem formulation is as described in Schmit
and Ramanathan except that the upper-level stress constraints are replaced
by linear approximations to the optimal cumulative constraints using the op-
timization results and the optimal sensitivity analyses of the lower level. This
method is demonstrated in [56], generalized for multiple levels in [57], and
applied to a large transport aircraft sizing problem in [67]. The method is
combined with approximation methods for the constraints in [3], and two more

recent variations of the method are described in [61].

Since the linear decomposition method is essentially the decomposition



of a problem using coupling variables (the upper-level design variables enter
into the lower-level subproblems as parameters), other solution methods that
allow coupling variables can be used to form alternate solution strategies. The
penalty approach of Haftka [21], and the method of Thareja and Haftka [64]
are two such examples, which interestingly enough can be efficiently solved at a
single level. More recently, nonhierarchical decomposition methods have been
developed to simplify the multidisciplinary optimization process. These meth-
ods utilize the notion of a global sensitivity analysis of interacting subsystems
[60] to determine the total sensitivity of interdependent subsystems to changes
in problem parameters, and concurrent subspace methods along with an over-
all coordinating problem for optimization (see references [8], [54], and [59]).
Global sensitivity analysis has also been shown to be useful for hierarchical

structural analysis by Padula and Polignone in [38].

1.2 Scope of Present Study

In the present dissertation, efficient methods for solving structural optimiza-
tion problems are developed by approaching an optimization problem using a
theoretical framework that is more general than the nonlinear programming
theory that forms the basis of the structural optimization methods described
in the previous section. The approach of using a different, and perhaps un-
conventional, theoretical framework to take a fresh look at an old problem
is common in mathematics. Utilizing a generalized theoretical framework in
studying structural optimization allows for a new perspective of the existing
solution methods and suggests new approaches that are more efficient than the

existing approaches.



Equilibrium programming (EP), or non-cooperative game theory, is the
generalized theoretical framework utilized in the present dissertation. A more
detailed overview of EP is presented in the next chapter, but in brief, equilib-
rium programming is a theory that describes the behavior of multiple, interact-
ing systems that can each be described as NLP problems. An important advan-
tage of utilizing an equilibrium programming framework for developing struc-
tural optimization methods over ad-hoc approaches is that a well-developed
theory concerning existence and optimality of solutions is available in the lit-
erature. Thus, the development of the equilibrium programming structural
design formulations in the present dissertation was guided by, and benefitted

from, the theoretical structure provided by EP.

Additional guidance for the development of computationally efficient,
equilibrium programming structural design formulations is obtained by study-
ing the reasons for the success of the commonly used design methods. As
indicated in the previous section, the commonly used methods for solving large-
scale structural optimization problems include approximations for the design
constraints, various methods for reducing the size of the problem, and decom-
position of the problem into multiple subproblems that can be solved in paral-
lel. These methods have been very successful in improving the computational
efficiency of finite-element-based structural analysis and optimal structural de-
sign. A study of the computational advantages provided by these methods can

suggest steps to further improve computational efliciency.

Using approximation concepts, such as simple, approximate equations
to describe the design constraint functions, the number of expensive finite el-

ement analyses required in the NLP solution is reduced significantly. But a
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~primary reason for the improved efficiency is that the number of sensitivity

analyses, which supply sensitivity derivatives for the gradient-based search
methods commonly used, is dramatically decreased. It is often stated that
the sensitivity derivatives obtained by the semi-analytic direct sensitivity anal-
ysis method (initially developed in [14]) are inexpensive because the factors
for the stiffness matrix in the displacement sensitivity equation are available
from the structural analysis. However, the right-hand side of the displacement
sensitivity equation has as many columns as there are design variables. As a
result, the computation of the right-hand side for the semi-analytic sensitivity
equation, the back substitution to determine the matrix of displacement sen-
sitivity derivatives, and the use of this matrix in chain rule or finite difference
calculations to determine stress sensitivity derivatives can be very expensive.
In addition, the computational effort for computing these sensitivity derivatives
increases in almost direct proportion to the number of load cases (however, as
the number of load cases increases, the adjoint sensitivity method may become
more computationally efficient than the direct method). The dominance of sen-
sitivity analysis cost over the structural-response analysis cost is alluded to in
[3], and it is explicitly demonstrated for the larger example problems described
subsequently. Thus, as problems become more complex, a fundamental need is

to reduce the number of sensitivity derivative calculations.

An understanding of the primary advantages of decomposition of an
optimization problem can also guide development of methods having increased
computational efficiencies. A fundamental advantage of the linear decompo-
sition method is that when a number of lower-level subproblems are to be

solved, they can be solved in parallel. Another advantage, which is not often



highlighted, is that the displacement sensitivity derivatives calculated are sen-
sitivity derivatives with respect to a small set of upper-level design variables.
In other words, these derivatives are with respect to a relatively small number
of substructure stiffnesses, not with respect to the more numerous detailed ge-
ometry parameters. Thus, the number of displacement sensitivity derivatives
required can be greatly reduced using the linear decomposition method. Even
with this advantage, it was determined for the example problem in [67] that
36% of the total computer time for problem solution was utilized in the finite-
element-based analysis and sensitivity derivative calculations that involved only
five of the 1300 design variables! Thus, although the new optimization methods
developed in the present dissertation are derived as equilibrium programming
formulations, one of the fundamental approaches for the development of these
methods is to find ways to reduce the number of sensitivity analyses required,

and to reduce the size of the sensitivity analysis problems.

In subsequent chapters, equilibrium programming theory is summarized,
four equilibrium programming structural design formulations are developed,
and numerical results for two of these formulations are presented. Linear struc-
tural analysis is assumed in the derivations and test problems, and the con-
straints considered are side constraints, displacement constraints, stress and
local buckling constraints. Specifically, some of the fundamental properties of
equilibrium programming are summarized in chapter 2. In chapter 3, the basic
equations governing finite-element-based structural analysis and optimization
are described, and two commonly used design methods, fully stressed design
and constraint approximations, are developed as EP design formulations. Two

new EP design formulations are also derived in the chapter. The first new EP

11
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design formulation utilizes approximate, updated sensitivity derivatives that
replace the constraint sensitivity derivatives determined by a traditional sen-
sitivity analysis at a small fraction of the cost. The second new EP design
formulation is a substructure-based decomposition method in which the sensi-
tivity analysis subproblems are greatly reduced in size, and can be solved in
parallel. The method of derivation of this formulation ensures the existence
and optimality of the solution of the decomposed problem. In chapter 4, some
specific information regarding the computer implementation of the EP design
formulations is given, and results of using the two new formulations on test
problems are obtained and compared with a commonly used method. The test
problems for the EP design formulations range from a simple ten-bar truss to a
high-speed civil transport having 348 design variables. The overall results are

summarized, and suggestions for future work are given in chapter 5.



Chapter 2

Equilibrium Programming Background

In this chapter, the development of equilibrium programming and its previ-
ous uses in engineering design are reviewed. The mathematical statement of
an equilibrium programming problem, the necessary condition relations, and
a solution existence theorem are stated. Some properties of an equilibrium

programming solution and some solution methods are also given.

2.1 Equilibrium Programming Background

Equilibrium programming (EP), or non-cooperative game theory, was devel-
oped in an operations research setting. The first proof of the existence of the
solution to an equilibrium programming problem, called an equilibrium point,
is due to Nash [34]. In Nash’s treatment, the subproblems assume the roles of
players trying to maximize their individual pay-off functions in a game, and
the domain for each subproblem is a fixed set of strategies that each player can
utilize. The formulations of the subproblems are generalized in Debreu [10] so
that the domains of each subproblem are functions of the design variables of the
other subproblems. Debreu proves the existence of the equilibrium point, sub-
ject to certain restrictions, assuming that the feasible domains are nonempty,

closed, and bounded regions. Zangwill and Garcia [68] generalize the theorem

13
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of Debreu, and prove existence of equilibrium points under weakened feasibility

assumptions.

Although there have been applications of equilibrium programming to
economics, game theory, and network theory ([15], pp. 112 - 196), there have
been few applications of equilibrium programming in engineering design. Its
use in multicriteria engineering design is described by Vincent [65]. In mul-
ticriteria design, tradeoffs between possibly conflicting criteria are required so
that the design is acceptable to all the designers involved in the design process.
Drawbacks in using a simplistic equilibrium programming approach to multi-
criteria design (i.e., allowing each designer to independentlyroptimize his own
design objective function) are nonconvergence of the design, or convergence to
a design that is inferior to other possible designs for all the designers. Im-
position of an overall coordinating management of the design process may be
required to obtain satisfactory designs. One coordination method for the game
theory approach to multicriteria design is developed in [42] and is applied to
illustrative structures-controls multicriteria design problems in [41]. Thus, an
equilibrium programming formulation that includes some form of coordination
appears necessary for equilibrium programming to be useful in engineering de-
sign. In the EP design formulations derived in the present dissertation, the
minimum-weight structural optimization problem, which is essentially a NLP
problem, is reformulated as an EP problem. Coordination of the EP subprob-

lems so that the solution is optimal can be important.



2.2 Features of Equilibrium Programming Problems

The theory of equilibrium programming provides a framework to analyze multi-
ple, interdependent nonlinear prograrhming problems. Following Zangwill and
Garcia [68], equilibrium programming is a generalization of nonlinear program-
ming (NLP) which can be personified as having M decision makers (which
may be implemented as search algorithms) that interact in a system. Each
decision maker has a NLP subproblem to solve, and an independent set of
design variables to control. The mathematical statement of this problem fol-
lows. The design variables controlled by decision maker i are denoted as x;,
the design variables of all M decision makers are denoted as x = (xi,...,Xar),
and all design variables not controlled by decision maker i are denoted as
X; = (X1,...,Xi-1,Xi+1,..-,Xpn). Decision maker ¢ has an objective function
to minimize, f;(x;,X;), while satisfying a set of constraints. Thus, the mathe-

matical description of equilibrium programming is:

H)lclt_n fi(xi, X:)
subject to:  g;(x;,%X;) <0 (2.1)

h;(x;,%;)=0

forthei=1,..., M interacting NLP subproblems. The variables following the
comma in any of the functions in statement (2.1) are treated as fixed parameters
in that subproblem. Thus, in the NLP problem of decision maker Z, the design
variables from other decision makers X; enter as parameters that account for

the coupling of the subproblems.

Any value x that is a solution to all the NLP subproblems represented

by statement (2.1) is called an equilibrium point. There may be numerous equi-
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librium points of an equilibrium programming problem. In a manner similar
to NLP, first-order necessary conditions are satisfied at an equilibrium point
subject to a constraint qualification. Thus, at an equilibrium point, there exist

Lagrange multipliers (X;, ¢;) such that the following conditions are satisfied:

0 fi(xi, Xi) + (/\')Tagi(xi, i)

ox; : ox;
+(ui)T———ahiéji’ %)~
gi(x, %) < 0 (2:2)
h;(x;,%;)) = 0O
Ao >0
) gi(x, %) = 0
for i = 1,..., M. The conditions governing the existence of solutions (x, A, )

that satisfy the necessary condition relations (2.2) and solve the equilibrium

programming problem (2.1) are discussed in the next section.

2.3 Ecxistence of an Equilibrium Point

The satisfaction of a constraint qualification is required for both the existence
of a solution to the first-order conditions represented by statement (2.2) and
for the existence of an equilibrium point. One form for the constraint qual-
ification is given in [68]. The constraint qualification is satisfied if, for all x
feasible to the NLP subproblems represented by statement (2.1), and for every
subproblem i: 1) the vectors dh, ;(x;, X;)/0x; for all components j of h; are
linearly independent, and 2) there is at least one solution z; to the relations:

Og; (xi, Xi) 2

e n <O (2.3)



where g7 is the vector of inequality constraints in subproblem ¢ that are active
at x. With regard to the inequality constraints, this constraint qualification
essentially states that it is always possible to move into the interior of the fea-
sible region from a point on the boundary of that region. However, because
constraint qualification relations (2.3) must be satisfied individually by each
EP subproblem, these requirements on the constraint functions in EP are more
restrictive than in NLP. For example, if the constraints from two EP subprob-
lems are given by g}(-,x2) and g3(x2, -), then relation (2.3) cannot be satisfied
for subproblem 7 = 1 because (9g}/dx;)z1 = 0. However, relation (2.3) may
be satisfied for this example when the constraints and design variables of the

subproblems are combined within a single NLP problem (i.e., (0g*/0x)z < O

where g* = (g7, 83) and x = (x1,X2)).

A very general theorem for existence of an equilibrium point that is the
solution of problem (2.1) is given in [68]. In this theorem, continuity, but not
differentiability, of the objective and constraint functions is required. Other
conditions for existence are: 1) the functions satisfy constraint qualification
relations (2.3) (actually only a weakened form of the constraint qualification is
required); 2) the feasible region is bounded with at least one feasible point x’ for
which g;(x},%;) < 0 and h;(x},%;) = O for every feasible point x; 3) the func-
tions f;(x;, %;) and g; ;(x:, X;) are convex in x;; and 4) the functions h; ;(x;, X;)
are linear in x; and, for a given 7, have linearly independent gradients. The con-
vexity and linearity restrictions on (f;, g;) and h;, respectively, may be relaxed
and a solution to the necessary condition relations (2.2) will still exist. How-

ever, the solution may not be an equilibrium point. Other versions of the EP
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existence theorem are reported in [68]. The sufficient conditions for existence
of an equilibrium point are more restrictive than those required for existence
of an optimal NLP solution. In addition to the more restrictive constraint
qualification, a NLP solution exists with either condition 2) given above, or
with condition 2) replaced by the coercive assumption defined by f(x) — +oo
as [x| — oo ([69], p. 363). Some interesting equilibrium point properties are

described in the next section.

2.4 Some Equilibrium Point Properties

Although the differences between an equilibrium point and an optimal point
(i.e., the solution of a NLP problem) may appear slight, they are important.
The following equilibrium point properties, summarized from [15], illustrate the

differences. Several examples of these differences can be found in the reference.

An equilibrium point is, in general, different from an optimal point,
even if the same constraints are satisfied and each EP subproblem has the
same objective function. This difference can occur because the coupling of the
constraint derivatives in the respective necessary condition relations is gener-
ally weaker for an EP formulation than for a NLP formulation. An example
illustrating the differences follows. Suppose that there are two EP subproblems

defined by the statements

min 2r; — T2
5]

IA
—

subject to: 0 < (2.4)

—z;+72 < 0



and

min 2z, = T
T2

IA
ek

subject to: 0 < 1z (2.5)

-1 +1 < 0

These subproblems have the same objective function and a common constraint.
All the points on the line segment connecting (0,0) and (1,1) are equilibrium
points. If any point on this line segment is attained during the solution process,
the stability property of an equilibrium point ([15], p. 84) will prevent any
movement from this point, even though there are neighboring solution points
that would decrease the objective functions of both subproblems. Suppose
that the constraint relations of statements (2.4) and (2.5) were combined into
a single NLP using their common objective function, and with design variables
(z1,z3). Then the only optimal point for this NLP problem would be (0,0).
EP formulations for modeling a system enable the M subproblems to have M
different, and possibly conflicting, objective functions. Thus, in general, the
equilibrium points of an EP formulation of a system will differ from the optimal
points of an NLP formulation of the system that uses the same constraint

relations but has only one objective function.

Additional constraints can affect EP solutions differently than NLP so-
lutions. In NLP, additional constraints generally increase the value of the
objective function. However, in EP it is possible for additional constraints
to force a coordination or cooperation of the subproblems that reduces the
objective functions of all the EP subproblems. In the previous example, if

the equilibrium point (0.75, 0.75) were found during the solution process, the
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objective functions for both subproblems would be 0.75. If the additional con-
straint zo < 0.5 were added to subproblem (2.5), the objective functions at the
new equilibrium would be reduced to a value no larger than 0.5. The stability
property of an equilibrium point mentioned previously states that a solution
to an EP problem does not change for a perturbation of the design variables
of a single subproblem from equilibrium values. Under certain restrictive as-
sumptions, the equilibrium point is unique, and therefore the stability of the
equilibrium point is global [30]. If the equilibrium point is globally stable, the
solution methodologies discussed subsequently are more likely to converge to

the equilibrium point.

2.5 Solution Methodologies

Because the existence of an equilibrium point is independent of any particular
solution method, an equilibrium point can be obtained in several ways. The
most straightforward method is to solve all the subproblems sequentially in
some predetermined cyclical order. When the solutions to all the subprob-
lems do not change from the previous cycle, an equilibrium point has been
reached. Although this method is used in the present dissertation, it may not
converge, as demonstrated in [65]. Two approaches that improve the conver-
gence characteristics of a sequential solution method are: 1) approaches that
modify the objective functions so that they are strictly convex (such as the
proximal point algorithm [44], or the penalty approach of [62]); and 2) move-
limit-control methods. Incomplete convergence of intermediate subproblem
solutions may also be used to improve computational efficiency. Another varia-

tion of the sequential solution method is to solve the subproblems in a sequence



that is determined by information generated during the solution process. Some
subproblems may even be omitted from a particular cycle. However, all the
subproblems would need to be present in the last cycle to ensure convergence

to an equilibrium point.

In another solution method described in [15] (p. 97), the equilibrium
point is found by converting the necessary condition relations (2.2) for each
of the subproblems into a so-called Kuhn-Tucker equation set. The set of
equations can then be solved using any nonlinear equation method. Homotopy

methods are described in [15] as one method for solving these equations.

In yet another solution method, applicable if parallel computation is
available, the M subproblems can be executed on M processors in an asyn-
chronous manner. Since the other subproblems communicate with subproblem
i only through the parameters X;, the processors are effectively decoupled. Any
update of x; during the solution process on processor i can be made immedi-
ately available to the other processors. This method may only be applicable
if the functions in the problem have favorable properties [30], and may require
additional controls on the solution process to ensure convergence to an equilib-
rium point. For example, relaxation techniques are used as a control method

to improve convergence properties in [6].
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Chapter 3

Development of Equilibrium Programming
Structural-Design Formulations

In this chapter, the mathematical definition of a NLP-based, optimal struc-
tural sizing problem is stated as a point of departure for the development of
equilibrium programming structural-design formulations. Only a single load
case is used in the following development; extension to multiple load cases is
straightforward. Four EP structural-design formulations are then developed.
The formal definition of the EP design variables, x;, will be given for each
formulation. This formal definition may include both true design variables
that can only be determined during the solution of the minimization problems,
and behavior variables that can be determined from an analysis within the

subproblem after the minimum is found.

The first two EP design formulations developed herein were initially de-
scribed by the author in [51]. Their primary purpose is to further acquaint
the reader with equilibrium programming concepts, and to show that two com-
monly utilized structural-sizing methods are, in actuality, EP formulations.
Thus, EP formulations are currently being used to improve the computational
efficiency of structural sizing. In these formulations, the EP subproblems con-

sist of a structural-sizing subproblem (or subproblems for the first formulation),
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and a structural-response subproblem for each load case. The first equilib-
rium programming structural-design formulation developed herein considers
only stress and local buckling constraints, and side constraints. This formula-
tion is shown to be equivalent to the method of fully stressed design for rod
and membrane elements. The second formulation to be described provides for
optimal designs with displacement, stress and local buckling constraints, and
side constraints. This formulation is shown to be equivalent to the NLP-based
approach to optimal structural sizing using a first-order Taylor approximation

of the structural response for a rapid analysis.

In the third EP design formulation to be presented, an EP subproblem
is developed that performs an approximate sensitivity analysis for a structural-
response subproblem using the results of a single finite element analysis and the
sensitivity derivatives of a previous iteration. Thus, the cost for this approxi-
mate sensitivity analysis is negligible. This formulation was first reported by
the author in [52]. Similar expressions for approximate sensitivity derivatives
were developed using an ad hoc method in [31] for use in trajectory optimiza-
tion, and the present formulation generalizes these expressions and provides a

formal basis for their derivation.

In the fourth EP design formulation developed herein, a novel substruc-
turing technique is utilized to decompose the analysis and sensitivity calcu-
lations for structural design. The substructural analysis portion of the for-
mulation described herein was first reported by the author in [53]. In this
formulation, the structure is divided into substructures, and each substruc-
ture has its structural response and sensitivity derivatives determined by a

structural-response subproblem. The structural sizing and the coordination

23



24

of the structural-response subproblems are determined by a single structural-

sizing subproblem.

3.1 Optimal Structural-Sizing Problem Statement

~ The mathematical descriptions of finite-element-based, linear structural analy-

sis, and optimal structural design are given in this section to provide a point of
reference for the ensuing discussions. A single structural load case is assumed

in the descriptions.

A minimum potential energy formulation can be used in a finite-element-
based structural analysis to calculate the structural displacements and stresses
that are required to evaluate a design. Given the structural arrangement, the
sizes for all the structural elements, a discretization of the structure into finite
elements, and a set of external forces on the discretized structure, the correct
structural displacements are those that minimize the potential energy of the
structure. Thus, the structural response is the solution to the unconstrained

NLP problem given by
min (1/2 u’Ku - FTu) (3.1)

where the first term in (3.1) is the strain energy, and the second term is the work
due to external forces. The vector u is a vector of nodal displacements, and F is
a vector of external nodal forces (see the Nomenclature section for a discussion
of notation and a full list of symbols). The domain of u is the entire space R"
(where n is the number of displacement degrees-of-freedom), but the boundary
conditions on u are assumed to be incorporated in the global stiffness matrix K.

The necessary condition relations for the unconstrained minimization problem



represented by statement (3.1) are simply the linear equations:
Ku=F (3.2)

Once the displacements u have been determined from either of these two state-
ments, stresses o (or stress resultants N) within every element of the structure
can be calculated from the displacements, the element strain-displacement re-

lations, and the element constitutive relations.

A nonlinear programming method that is used for optimal structural
design can be personified as having one decision maker (which may be imple-
mented as a search algorithm) with control of a set of design variables given by
a vector v. The goal of the decision maker is to minimize an objective function
W (v) while satisfying a set of constraints. The mathematical description of a

NLP problem is:
min W(v)
subject to: g(v) <0 (3.3)

h(v)=0

where g(v) are inequality constraints — which could include simple bounds on
the design variables — and h(v) are equality constraints. A common choice for
the objective function W (v) for structural sizing is the weight of the structure.
The structural-sizing design variables v, referred to herein as sizing variables,
can be the dimensions of the individual elements that explicitly contribute to
weight, such as beam dimensions, skin thicknesses, and stiffener dimensions and
spacing; or they can be variables which affect the weight in an indirect manner,
such as the orientation of fibers in a composite structure. The constraint func-

tions considered in the present study are side constraints (such as minimum
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gauge) on the sizing variables g®(v), the local buckling and stress constraints
g?(v,a(v)), and the displacement constraints g"(u(v)). The displacement
constraint functions g"(u(v)) are assumed to have no direct dependence on
the sizing variables v, but the functional form u(v) indicates an indirect de-
pendence on v through the structural analysis. The stresses o(v), which are
shown to depend on v in the constraint functions, can have several forms.
For example, one can write o(v) = (v, u(v)) = o™ (v, N(v,u(v))) to show
that the functional form for stresses can depend directly on displacements u,
or indirectly on displacements through the stress resultants N. Very often the
side constraints, the displacement constraints, and the stress constraints reduce
to simple bounds on the sizing variables, the displacements, and the stresses,
respectively. Thus, the NLP approach to structural sizing that utilizes finite-

element-based structural analysis can be summarized by:

min W(v)

subject to: g°(v) < O (3.4)
g'(u(v)) < 0

g”(v,o"(v,u(v))) < 0

where the displacements u(v) are found from statement (3.1) or equation (3.2).
The necessary conditions for the structural-sizing problem (3.4) are the same

as given in (2.2) restricted to a single subproblem.

3.2 Structural-Design Formulation 1

In this section, a simplistic approach to defining an equilibrium programming

formulation for structural design is described, its limitations are outlined, and



modifications that overcome the limitations are developed. In this approach,
one EP subproblem is a structural-response subproblem that is defined by
the minimization problem of statement (3.1). In this subproblem, denoted as
subproblem 1, the design variables are the displacements (i.e., x; = u), and
the sizing variables v are treated as fixed parameters. By parallel reasoning,
a second subproblem, denoted as subproblem 0, could then be identified as a
structural-sizing subproblem represented by statement (3.4) in which the design
variables are the sizing variables (i.e., xo = v), and the displacements u are
treated as fixed parameters. The shortcoming of this EP formulation is that
an equilibrium point may not exist because constraint qualiﬁcation relations
(2.3) cannot be satisfied for some constraints. For example, maximum stress
constraints for rod elements having cross-sectional areas A as design variables
(i.e., xo = v = A) are given by gf (x) = 0(u) — Tmax < 0. These constraints
depend only on the displacements (x;), and not on the areas (xo); so there is no
z, that will satisfy the inequality in relation (2.3). Thus, a more sophisticated

formulation is required.

A formulation that uses an alternate form of the stress constraints may
enable satisfaction of the constraint qualification relations. Since functions for
calculating the stress and buckling constraints can be constructed by using both
the sizing variables and the stress resultants of a structure, a change of variable
is made to utilize stress resultants in the constraint functions. Because the
stress and buckling constraint functions depend explicitly on the sizing variables
with this change of variable, the satisfaction of the constraint qualification is
much more likely, but solution existence is still not guaranteed as will be shown

in a subsequent example.
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The stress resultants throughout the discretized structure are computed
within the structural-response subproblems, and are symbolically represented

by the equation
N = N(v,u) (3.5)

Thus, in this structural-design formulation, the structural-response sub-
problem (subproblem 1) consists of a solution of the unconstrained minimiza-
tion given by statement (3.1) (or its necessary conditions equation(3.2)) for
u followed by calculation of stress resultants N by equation (3.5). The design
variables of the structural-response subproblem are defined as x; = (u, N). The
stress resultants IN are used instead of displacements in formulating the stress
and buckling constraints of the structural-sizing subproblem (subproblem 0).
Thus, the structural-sizing subproblem in this equilibrium programming for-

mulation is:

<ty W)

AN
o

subject t0: Vyin — V (3.6)

gg"(v,aN(v,N)) <0

where the side constraints are shown as simple minimum gauge constraints in

this subproblem.

The method of fully stressed design [28] can be derived from this for-
mulation if: 1) only one-dimensional rod and two-dimensional membrane finite
elements are used; 2) one sizing variable is associated with each finite element
having a stress constraint; 3) the stress constraints limit the maximum stress
magnitude or von Mises stress; and 4) there are no buckling constraints. The

structural-sizing subproblem can then be decomposed into a set of independent



elemental problems, one for each sizing variable and constrained element com-
bination. The solution of these elemental problems is simple since the value
of the sizing variable that makes a constraint active can be found analytically
for each load case. For example, the elemental problem for the cross-sectional

area of one-dimensional rod element j is solved by:
Aj = max(Ajmin, [Nj|/0jmax) (3.7)

where max( ) chooses the maximum of its arguments, the structural-sizing
design variable zg; is defined to be the sizing variable A;, and Nj is the axial
force in the element j. Note that the quantities NV, are elements of the stress
resultant vector N, and are also elements of x; and X¢. A solution method that
alternates between solving the elemental sizing problems, and the structural-

response subproblem leads to fully stressed design if it converges.

As stated previously, the change of variables that recasts the stress and
buckling constraints in terms of sizing variables and stress resultants makes the
existence of an equilibrium point more likely, but not guaranteed. A simple
example makes this statement clear. Assume a rod is fixed between two rigid
walls and its temperature is increased; the design problem is to size the rod
cross-sectional area A to minimize the weight and to satisfy a maximum stress
constraint. The temperature change induces a strain which can be expressed
as an equivalent external load that is a function of the stiffness. Thus, the
equivalent external load (which is also the rod stress resultant N) is calculated
by the equality constraint Ay = N — kAT A = 0 in the structural-response
subproblem where the sign of N is defined to be positive for compression, % is

a constant of proportionality, and AT is the temperature rise. The minimum
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gauge and the stress constraints, which are calculated in the structural-sizing
subproblem, are given by go1 = Amin — A < 0and go2 = N — Aomax < 0,
respectively. These constraints are shown in figure 3.1. Since a minimum
weight design corresponds to a minimum A that satisfies the constraints, two
conditions can be identified in the figure. For a relatively low value of AT,
the fully stressed design approach given here will converge to x* shown in the
figure. If AT, is above a limiting value, the constraints allow for no feasible
region in the design space, a prerequisite for solution existence, and the fully
stressed design algorithm would diverge. This example is severe because even
a more sophisticated design method would fail for a large enough AT because

there would be no feasible region in design space.

Because structural design formulation 1 is a form of fully stressed de-
sign, it shares the advantages and disadvantages of fully stressed design. The
primary advantage is the simple nature of a structural-sizing subproblem that
requires no derivatives and is easily decomposed into a set of independent ele-
mental problems. The disadvantages are: 1) there is no mechanism to ensure
satisfaction of the necessary conditions of the optimal structural-sizing problem
(3.4) so that the resulting equilibrium point may not be an optimal point; and
2) constraints, such as displacement constraints, that have no explicit depen-
dence on the sizing variables are not considered. An EP formulation is desired
which satisfies the optimality necessary conditions at an equilibrium point, and

can satisfy displacement constraints.
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Figure 3.1: Design space for a rod constrained between two rigid walls under-
going a temperature change.

3.3 Structural-Design Formulation 2

If the EP subproblems are identified using the simplistic approach described at
the beginning of the previous section, the constraint qualification relations (2.3)
cannot be satisfied for any displacement constraint because the displacements
would be fixed parameters within the structural-sizing subproblem. In addition,
the constraint qualification relations may not be satisfied for certain stress and
buckling constraints. Substituting approximate models, that depend explicitly
on the sizing variables, for these displacements within the structural-sizing

subproblem can overcome these difficulties.

In EP structural-design formulation 2, the displacements u, which are
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parameters independent of the sizing variables in structural-sizing constraint
functions g(v,u), are replaced with a first-order Taylor series approximation
given by

du

A . (v—vi)+u (3.8)

u’(v,x;) =

In equation (3.8), the matrix du/dv may be viewed as a matrix of
optimal sensitivity derivatives with respect to parameters v [55] of the dis-
placements determined in the structural-response subproblem (subproblem 1).
The value v; is the value of v utilized in subproblem 1 when the sensitivity
derivatives are calculated. All the design variables for the structural-response
subproblem are utilized in equation (3.8) since x; = (u,0u/0v,v;). This ap-
proximation satisfies the following two properties. First, the approximation
depends explicitly on v so that constraint qualification relations (2.3) neces-
sary for equilibrium point existence can be satisfied. Second, the approximation
satisfies the conditions: u“ = u and du?/Gv = Gu/dv at the equilibrium point
X = x* where v = v; = v*. This second set of conditions ensures the opti-
mality of the design given by the equilibrium point because the EP necessary

conditions are then the same as the NLP necessary conditions for problem (3.4).

Using the definition of equation (3.8), the structural-sizing subproblem

is given by the following statement:

min_ W(v)
Xo=V
subject to: vi< v <v*
g’lv) £ 0 (3.9)
g'(ut(v,x;)) < 0
ga(v,a“(v,uA(v,xl))) < 0



where move limits v! and v* that are adjusted during the solution process have
been introduced to ensure convergence. The structural-response subproblem is
represented by unconstrained minimization problems given by statement (3.1)
(or the necessary conditions given by equation (3.2)), and the following equa-
tions (which can be formally treated as equality constraints) that determine

the behavior variables du/dv and v;:

Kl A 10

Vi = V

The first of the two equations in statement (3.10) is a sensitivity analy-
sis equation using a direct method of sensitivity analysis ([19], p. 264). In this
equation, the sizing variables v are assumed known, the vector u in the second
term is treated as a constant, and contributions from the nodal forces F are ne-
glected since F is assumed to be independent of v. In practice, the second term
of this equation is often determined by finite differences. The second equation
in (3.10) is a trivial identity which preserves the values of the structural-sizing
variables at which the sensitivity analysis is performed so they can be exported

to the other subproblems.

EP structural-design formulation 2 is equivalent to a NLP approach to
structural design with a first-order Taylor series for an approximate analysis
(i.e., the method of [45] except that reciprocal variables are not used) if the
equilibrium point is found by the following sequential steps: 1) solve the sub-
problems represented by statement (3.1) (or necessary conditions represented
by statement (3.2)) for u; 2) solve equations (3.10) for du/dv and vy; 3) use

the quantities found in steps 1 and 2 in equation (3.8) to form approximate
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models for displacements u”(v,x;); 4) utilize the approximate models of step
3 in the structural-sizing subproblem represented by statement (3.9) to solve
for v; and 5) repeat steps 1 through 4 in a cyclic manner, with an algorithm
defined to update the move limits, until the changes in the solutions from con-
secutive cycles converge. Although first-order Taylor series are used in this
development, other approximate models for displacements that depend on first

derivatives could be used in place of (3.8) ( [19], pp. 211-219).

3.4 Structural-Design Formulation 3

The two EP design formulations described previously represent current prac-
tices in optimal structural sizing. To further improve computational efficiency,
a formulation is derived herein that computes approximate, updated sensitivity
derivatives in an EP subproblem. The cost of computing these approximate
derivatives is essentially only the cost of the structural analysis, and the eval-

uation of the design constraints.

The approximate sensitivity analysis is derived as a correction, or up-

date, to previous values for the sensitivity derivatives. The sensitivity-derivative
update subproblem is described for a general scalar function f(v), where v is
a vector quantity, as follows. The values of f and the gradient of f, 8f/0v,
are assumed to be known at a previous value of v. These quantities are de-
noted as foq, 0foia/0v, and v, respectively. The value of f at the new value,
V = Vpew, iS also known and an approximation to the gradient of f at v = Vyew
is sought; this approximate gradient is denoted as 0 frew/dv. The difference be-
tween 8 foew/OV and O f,q/0V is given by the gradient updating vector a (also

called an update vector, with components that are called updates herein), and



the relation among these quantities is expressed by the equation

afnew . afo]d
W— v +a (3.11)

Using a criterion similar to that utilized in [11] (p. 171) in calculating
least-change secant updates of the Jacobian matrix for solving simultaneous
equations, the update vector a is chosen to be the vector that has the small-
est (weighted) magnitude, and that also satisfies a second-order Taylor series
relation between the quantities at v = vy and v = vgg. The constrained

minimization problem that expresses these conditions is:

I%;icn Ek:(ak wy)?

0f 1
f d + _ak)(vnew,k - 'Uold,k) (312)

subject t0:  frew = +

where wy, are user-defined weighting parameters. The equality constraint in the
minimization problem given by statement (3.12) indicates that the quantities ax
are approximations to 'Z? 02 f [8vrOV; (Unew s — Vo). Thus, the accuracy of the
sensitivity derivatives determined by the update vector is expected to degrade
as the quantity |Vpew — Vo] increases in value. Letting Avy = VUnew,x — Voldk
and Af = foew — fod — %9 ford/Our Awg, the solution to the minimization
problem given by statement (3.12) can be found analytically using a Lagrange

multiplier method
Af A’U}c

_———_w,%;Av?/wf (3.13)

ak=2

A simplified version of this expression has been developed by an ad hoc
method in [31] with application to the approximation of gradients for trajec-

tory optimization. However, the update equations described herein are derived
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independently using a formal methodology that allows for the general inclu-
sion of the weights w; that are not considered in [31]. For identical weights
wk, the update given by equation (3.13) is twice the Broyden update equation
described in [11] (p. 170), and is the same as that derived in [31]. The advan-
tage of including the general weighting terms is described subsequently. In the
present study, the function f represents a component of the constraint function

vector g.

3.4.1 Structural-Design Formulation Using Updated Sensitivity Deriva-

tives

The method of approximate, updated sensitivity derivatives is denoted as EP
structural-design formulation 3 (or simply formulation 3) herein. This for-
mulation is a modification of design formulation 2 described previously in
which update subproblems (3.12) are utilized during the solution process in
place of computing sensitivity derivatives such as (3.10). In subproblem 0 (the
structural-sizing subproblem), the design variables are xg = (v, vo, 8o, 9g0/3V).
All but the first of which are actually behavior variables in that subproblem.

Formally, this subproblem can be represented by the following statement:

min W(v)
v
i 0
subject to: %(v—vl)—f-gl < 0
vi< v <t (3.14)
g'(v) <0
Vo = Vi

g = &



de _ O&:

av ov
where the general constraints are linearized, and move limits v! and v* that
are adjusted during the solution process have been introduced to ensure con-
vergence. The last three equalities in problem (3.14) are required to define
data items that are saved to be utilized in the structural-response subproblem.
Subproblem 1 (the structural-response subproblem) has design variables given
by x; = (u, g1, vy, 9g1/8v), and most of these quantities can be computed after
solving for the first member of x; (i.e., u). The subproblem statement is given

as:

min (1/2uTK(v)u - FTu>
subject to: g = g(v,u) (3.15)
Vi = V

SENS(choice) = 0

where the expression SENS(choice) = O represents the conditions:

ou _ O9K(v)u
K(v)b—; = e (3.16)
dg1; gj((v + Av;eY), (u+ du/ov Av,-e}’)) - g1
av’i - A'Ui

when “exact” sensitivity analysis is desired, and

dg1;  Ogoy 8905\ 91 — Goj — Ogo; /v (V — v
915 _ 9905 + 2(v; — o) < Qo,a) 915 — 9o 920,3/ ( 5 o) (3.17)
ov; ov; ov; (v —voy) (690,3'/811!)

when approximate sensitivity analysis is desired. Several implementation fea-
tures of this formulation should be noted. The potential energy minimization

in (3.15) is a formal statement, and may replaced with the necessary conditions
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of equation (3.2). The equality constraints in (3.15) are formal definitions to
define quantities needed in the structural-response subproblem. As in the de-
termination of the move limits, an additional algorithm is required to determine
whether statement (3.16) or statement (3.17) is utilized for SENS(choice) = 0
in statement {3.15) at each stage in the solution process. Because the update
minimization subproblems have analytic solutions given by equation (3.13),
these solutions are incorporated as constraints in the structural-response sub-
problem using equation (3.17) instead of specifying them as independent sub-
problems. Finally, the weights in the update subproblems have been specified
in equation (3.17) as the inverse of the gradients, w; = J¢o/0v;. Thus, the

updates to the sensitivity derivatives determined from the subproblems given

by statement (3.12) minimize the relative changes of the sensitivity derivatives

from their previous values, and the update to each component of a gradient
vector is related to the component magnitude. One advantage of this weight-
ing method is that the sparsity pattern of sensitivity derivatives is maintained
since an entry that is zero or small in magnitude remains zero or small in mag-
nitude after updating. This method of weighting was also found to provide
better convergence than using equal weights in some preliminary optimization
studies. More details concerning the computer implementation of this design

formulation are discussed in the next chapter.

3.5 Design Formulation 4

In this section, an EP design formulation is described that utilizes decom-
position methods when computing the structural response and the sensitivity

derivatives. In this formulation, the structure is divided into substructures, and



each substructure has its structural response described by a structural-response
subproblem. The structural sizing and the coordination of the structural-

response subproblems are determined by a single structural-sizing subproblem.

Substructure-based design methods have been utilized in [25] and [26],
but the analyses in these references were not based on substructure princi-
ples. Traditional (i.e., superelement), substructure-based sensitivity methods
for structural optimization have been used to form a reduced basis for approxi-
mate analysis in [36], have been derived using the adjoint sensitivity method in
[1], and have been combined with kinematic constraints to reduce the number
of interface degrees of freedom in [37]. The adjoint method of substructure
sensitivity analysis of [1] is generalized to multiple levels of substructures in
[35]. An alternate method of using substructures for performing structural
analysis is developed in [12]. The method of reference [12] is essentially a
substructure-based, hierarchical decomposition method in which the response
of each subsfructure is determined by independent subproblems. Coupling con-
straints that determine the interface forces required to enforce the compatibility
of common interface nodes form a coordination problem. Decomposition into
substructures that are not restrained from rigid-body motions yields subprob-
lems that are not strictly convex. Nonconvexity causes difficulties, as noted
in [17], that can be handled using special techniques for solving both the sub-
problems for each substructure and the coordination problem. A modification
of this alternate substructure analysis method, described in [13], incorporates
penalty functions to ensure strict convexity of the subproblem objective func-

tions.

The EP design formulation of the present section is similar to the
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method of [12], but strict convexity is not required in this approach. In the
present derivation, each design constraint is assumed to be local so that it
depends on the sizing variables and the structural response of a single sub-
structure. Thus, stress constraints, local buckling constraints, and constraints
that are functions of displacements within single substructures may be con-
sidered in this approach. In the next subsection, the decomposition of the
structural analysis is discussed utilizing a two-substructure example. Then
the derivation is extended to an arbitrary number of substructures, and the

substructure-based EP design formulation is developed.

3.5.1 Derivation of the Substructure Analysis Method

The method of determining the structural response is presented for a struc-
ture that is decomposed into substructures, each of which is assumed to have
a linear elastic response with no zero-strain-energy motions possible except for
rigid-body motions. To permit a simple exposition of the method, it is initially
derived using two substructures. Four salient features characterize the present
method for structural analysis using substructures. Firstly, when the substruc-
ture is not fully restrained from rigid-body motions, the structural response
is decomposed into the rigid-body motions (referred to as “modes” herein) of
the substructure, and displacements orthogonal to the rigid-body motions (i.e.,
the elastic deformations). Secondly, an augmented stiffness matrix is formed
for each of these substructures. These stiffness matrices are symmetric, and
can be factored independently and, computationally, in parallel. Thirdly, a
structural-response coordination problem determines the forces between the

substructures, and the magnitude of the rigid-body modes. The structural-



response coordination problem requires the factored, stiffness matrices of the
substructures, and results in a system of linear equations with its order equal to
the number of shared degrees-of-freedom between substructures plus the total
number of substructure rigid-body modes. Lastly, once the forces between the
substructures are determined, the displacements orthogonal to the rigid-body

modes can be determined.

The simple wing structure finite element model in figure 3.2 is utilized to
demonstrate the derivation of the analysis decomposition method. The model
shown in the figure is decomposed into two substructures, the second of which
is unrestrained and thus has six rigid-body modes. The linear elastic structural
response for the entire wing is determined using a minimum potential energy
formulation. This response is the solution to the unconstrained minimization
problem given by statement (3.1) having the necessary conditions given by
equation (3.2). In this section, the nodal displacements are denoted using the
lower case (i.e., u). When the displacements of a substructure can be decom-
posed into elastic deformations and rigid-body modes, the elastic deformations
are denoted by the upper case (i.e., U). Thus, the displacements of the entire
wing are denoted by the nodal displacement vector u, and the displacements of
the two substructures are given by the vectors u; and u;. The external loading
for the entire wing is given by the nodal force vector F, and the decomposition
of the external loading is given by vectors F; and F5 for the two substructures.
The dimensions of each of these vectors is the number of nodal degrees of free-
dom of the appropriate substructure. The nodal displacements at the interface
of the two substructures must be equal for the two substructures to be compat-

ible. Those compatible displacements at the interfaces of the two substructures
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Figure 3.2: Example wing structural finite element model decomposed into two
substructures.

are specified in a predetermined order with signed Boolean matrices denoted
by B, and B,, where the nonzero entries of B, are equal to +1 énd the nonzero
entries of B, are equal to —1. The constraints of compatible displacements at
the interface between substructures is then expressed by Bju; +Bous = 0. The
decomposition of the externally applied nodal forces at the interface nodes is
arbitrary as long as the sum of the forces applied to the interface nodes of each

substructure is equal to the actual externally applied forces at these nodes.

In a substructural decomposition, a stiffness matrix can be formulated
for each substructure. These stiffness matrices are relative to the substructure
nodal displacement vectors u;, and are denoted by K;. Thus, a constrained

minimization problem that is equivalent to the problem given by statement



(3.1), and uses the substructure nodal displacement vectors is
min g 0 8 K1u1 -+ ~U, K2u2
(uy,up) \2 2

—FTu, — Fqu) (3.18)

subject to: Bju; + Bauy, =0

The constrained minimization problem given by statement (3.18) has a separa-
ble objective function with coupling constraints, and appears to be a candidate
for a hierarchical decomposition into two distinct minimization problems hav-
ing design variables u; and u,, respectively. The lower-level subproblems for

the displacements using such a decomposition are

1
I{lllln iu?Klul - Fful + )\TBlul (319)
and
1
1{111211 5U§KQUQ - Fgug + )\TBQUQ (320)

where the goal coordination approach described in [32] (p. 240), and sum-
marized in the first chapter of the present dissertation, is utilized with the
common coordination inputs A. To find the minimum of problem (3.18) using
goal coordination, the coordination inputs would need to be determined by a
coordination problem that is typically the dual formulation of statement (3.18).
However, the minimization problem for (3.20) is insoluble due to the rank de-
ficiency of matrix Ky. An EP explanation for the insolubility of subproblem
(3.20) can be developed based on the conditions for the existence of an EP
solution. One of the sufficient conditions for the existence of an equilibrium
point requires a bounded solution space for the subproblems. However u, is

not bounded as seen from the following argument. Because substructure 2 has
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six rigid-body modes, a rigid-body matrix R, can be formed that consists of
the six rigid-body modes as column vectors. This rigid-body matrix satisfies
the condition KoRy = [0], thus the vector Rycx; added to any displacement us
will not change the substructure potential energy if the vector a, satisfies the
scalar equation FgRgag = 0. Since the vector o is not otherwise restricted,
it (and therefore u.) is unbounded. Thus, the sufficient conditions for solution
existence are not satisfied. To overcome the difficulties due to rank deficiency
of substructures having rigid-body modes, a pseudo inverse of the matrix K,
is used in [12] when solving for u, in the necessary conditions for subproblem
(3.20). The coordination inputs A, and the magnitude of the rigid-body modes
are determined in a coordination subproblem. Alternate ways of modifying
subproblem (3.20) to make its solution bounded are to add terms to make the
objective function strictly convex using the proximal point algorithm as in {7],
or using the separable penalty method of [62]. Another penalty method that

can convexify the problem is reported in [13].

From the preceding discussion, any decomposition of statement (3.1)
should explicitly account for the rigid-body modes of the substructures. One
such decomposition method follows. Let u; = Uz+Ryap where Uy satisfies the
supplementary condition RZ U, = 0 (i.e., U, is orthogonal to the rigid body
modes). The minimization problem given by statement (3.18) then becomes

. 1 7 Ioop
min (—ul Kl'lll + —U2 K2U2
(a1, U, ca) 2 2

—FTu; - FL(U; + R2cx2)> (3.21)
subject to: Biu; + BQ(UQ + Rgag) = 0

RIU, = 0



Using a hierarchical decomposition with goal coordination, three lower-level
subproblems can be formulated. The first is identical to statement (3.19), the
second is

1

min (§U2T K,U, — FIU, + ATB2U2) (3.22)
2
subject to: RIU, =0

and the third is

min —FTRyay + ATB3Ryay (3.23)

2

The objective function of subproblem (3.22) is strictly convex relative to
the subspace {U, | RTU, = 0}, and thus the subproblem will have a bounded
solution. However, subproblem (3.23) will have no finite solution unless A sat-
isfies the restriction —FTRy + ATB,R, = 07. This restriction on A becomes
a constraint in the standard goal coordination subproblem that maximizes the
Lagrangian function (as a function of A) in the dual formulation of statement
(3.21). This restriction is also used in the conjugate projected gradient ap-
proach to solving the coordination subproblem in [12]. One expression for the
coordination subproblem can be found from the following necessary conditions

for the structural-response problem given by statement (3.21)

Ku -F,+BfA = 0 (3.24)

- [ Uy F,-BIA] _
Kz[”]—[ 5 =0 (3.25)
R;(F,—BI)) = 0 (3.26)
By, + BQ(U2 + Rzag) = 0 (327)

where X are the Lagrange multipliers for the first constraint in statement (3.21),

p are the Lagrange multipliers for the second constraint in statement (3.21),
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and the matrix K is the augmented stiffness matrix given by

K, = { ;fq; %i’* ] (3.28)

Because the matrices B; in necessary conditions (3.24-3.27) are Boolean, the
Lagrange multipliers A are simply the interface forces between the substruc-
tures. Using equation (3.25), the condition RIK, = [0], and the fact that
the columns of Ry are linearly independent, equation (3.26) implies that the
Lagrange multipliers p are equal to zero. Note that equation (3.24) is the
necessary condition equation for subproblem (3.19), and equation (3.25) is the

necessary condition equation for subproblem (3.22).

The structural-response coordination subproblem that determines A and
a is obtained by substituting the solutions of equations (3.24) and (3.25) into

equations (3.26) and (3.27). This substitution yields the equation

-1 —1[pT 1 aT]T
M { A } _ | BiK7'Fy + [By | [0]| K3 [FT | 07 (3.20)
2 — RIF,
where the matrix M is given by
B,K;'BY + [B | [0)]K;'[B: [[0] | -B:R
M = 215 1 2 T 2 2 21%2 (330)
—(B3R>) | 0]

Note that the inverse of K, used in equations (3.29) and (3.30) exists because of
the inclusion of the constraint that U, is orthogonal to the rigid-body modes.
Thus, one approach to the calculation of the structural response (i.e., the nodal
displacements) is the following steps: 1) factor the matrices K, and K, 2) use
these factored matrices to formulate the matrix M and the right hand side
of equation (3.29); 3) solve equation (3.29) for A and a»; and 4) and solve

subproblem (3.19) (or equation (3.24)) and subproblem (3.22) (or equation



(3.25)) for u; and Uy, respectively. The explicit computation of matrix M is
not necessary in the combined analysis and optimization approach described

in the next section.

3.5.2 Derivation of EP Design Formulation 4

In this subsection, the structural-optimization problem is decomposed into sub-
problems that perform the structural analyses and sensitivity analyses of each
substructure and a single subproblem that performs the coordination of the
structural analyses as well as the optimization of the design. This formula-
tion is denoted as EP design formulation 4. The decomposition method for
structural analysis derived in the previous section is extended to multiple sub-
structures. Then the design formulation is derived starting with a simultaneous
analysis and design formulation. The simultaneous analysis and design method
was initially investigated in [46]. It is utilized in [22] for linear structural anal-
ysis, and in {20] for nonlinear structural analysis. In the present simultaneous
analysis and design formulation, in which minimum weight is the design goal,
both the structural displacements and the sizing variables are utilized as design
variables, and the optimization constraints are the equations governing struc-
tural response (treated as equality constraints) as well as the usual inequality
constraints that ensure that the design meets the strength, buckling, and other
design requirements. Formulation 4 has the following features: 1) the analysis
and sensitivity derivatives of each substructure are independent and can be
performed in parallel (although the overall optimization procedure is still iter-
ative); 2) the resulting design is optimal; but 3) the structural response may

not be compatible between the substructures until the design converges.
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Structural Analysis using Multiple Substructures

The substructural analysis method developed previously is generalized to mul-
tiple substructures in this subsection. With multiple substructures, the use of
precise, although somewhat cumbersome, notation is necessary to avoid confu-
sion. Assume that there are M substructures, and that there are m substruc-
tures (0 < m < M) unrestrained from rigid-body motions if separated from the
rest of the structure. The n; displacement degrees-of-freedom of substructure
i are denoted by u; = (w1, - .. ,ui,ni)T. The substructures unrestrained from
rigid-body motions are ordered to be the last m substructures. These substruc-
tures have displacements denoted by u; = U; + R;¢; where R; is the matrix
containing the rigid-body modes of substructure i, and U; are displacements
orthogonal to these rigid-body modes. The orthogonality relation for U; is ex-
pressed by RTU; = 0. There are n’ independent relations governing the com-
patibility of the substructures, and the resultant equivalencing of degrees-of-
freedom at common interface nodes in the different substructures is represented
by the set A of n’ 4-tuples defined by A = {(4,k,p,¢) | < k and ujp = ur,4 }-
In the definition of set A, redundancies in the equivalencing of degrees-of-
freedom are omitted. For example, a degree-of-freedom shared by three sub-
structures need only be equivalenced between two pairs of substructures, not
all three pair-wise combinations. The compatibility constraint equations (i.e.,
the equations that enforce compatibility between the substructures) are then
defined in the following manner. The r** compatibility constraint equation will
depend on a degree-of-freedom in substructure j if either the first or second
element of the r*® 4-tuple in A is j. These compatibility constraint equa-

tions are expressed explicitly by defining the signed Boolean matrices B; for



j = 1,..., M which have dimensions n’

x nj. Matrix B; has a 1 at location
(r,p) if the r'" 4-tuple in A has the components (j,-,p, ), and it has a —1 at
location (r,q) if the r*P 4-tuple in A has the components (-, 7,-,¢). Otherwise,
the entries in matrix B; are zero. Thus, the compatibility constraint equa-

tions for all the substructures are symbolically represented by the system of n'
equations:
M
> Biu;=0 (3.31)
=1
The definition of the Boolean matrices B; in the present section reduces to the
previous definition of the Boolean matrices for the case of only two substruc-

tures.

Utilizing these definitions, the minimization problem for the structural

response given by statement (3.21) generalizes to:

M-m 1
min > (—u?K,;ui - FiTuz)
(U1,.-.,U.M_m, =1 2
UM—m+1, R aUM7
QM —mtls- - Opf)
M 1
+ > ('éUiTKiUi - F (U + Riai))
i=M-m+1
M-m M
subject to: Y. Byu; + >, B;(U;+R;a;) =0 (3.32)
i=1 j=M-m+1

The necessary conditions for the minimization problem given by statement (3.32)

are
Kiui—Fi—}—BiT)\:O for i=1,....M —-m
-~ . . _ BT
K,—[B’]—[F’ OB*)‘}zo for i=M-m+1,...,.M (3.33)

RI(F;—B{A\) =0 for i=M-m+1,....M
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along with the first constraint equation given in statement (3.32). Here A are
the Lagrange multipliers corresponding to the first constraint equation in state-
ment (3.32), p; are the Lagrange multipliers for the last constraint equations
in statement (3.32), and the matrices K;fori=M-m+1,...,M are the

augmented stiffness matrices given by

- K; | R;
K; = [R,-T 0 ] (3.34)

The second equation in necessary conditions (3.33) combined with the condi-
tions RTK; = [0] for i = M —m+1,..., M, and the fact that the columns of
R, are linearly independent implies that the last equation in necessary condi-
tions (3.33) can be replaced with the condition that the Lagrange multipliers
p; are equal to zero. The structural responses u; for ¢ = 1,..., M —m, and

(U, ;) for it = M —m +1,..., M are found by solving the first and sec-

ond equations of necessary conditions (3.33), respectively, after the vector A is

determined.

The vector A may be determined simultaneously with the rigid-body
displacements a; for i = M — m +1,..., M by a coordination subproblem. A
coordination equation may be found by substituting the symbolic solutions for
u; and U; into the compatibility constraint equation in statement (3.32), and
solving this equation simultaneously with the last equation in necessary condi-

tions (3.33). The following matrix equation gives the coordination subproblem:



x| [ BEKF+ Ty [Bi 0K FT 07 ]
QM _m+1 _RTA:[—mHFM—mH
M| @r-mi2 | = —RY; i Fri-me2
| (834 ] | —RYA:IFM J
(3.35)

where the matrix M is given by

[ SMmBK; BT+ B o - .
[~ - —-m M—-m “ o —_
iM=M—m+1 [BI l [0” Ki leri I [O]]T M +1 +1 ) Y239 Y
B RS ERD
—(BM—m+2RM—m+2)T [O] ce 0
~(BurRa)” 0 T
(3.36)

Statements (3.35) and (3.36) are the generalizations of statements (3.29) and
(3.30) for multiple substructures. These statements are given for completeness,

but are not utilized in the following design formulation.

Decomposition of the Structural-Design Problem

The starting point for the design decomposition is a simultaneous analysis and
design formulation. The constraints are assumed to have the form g;(v;, u;)
for i = 1,..., M in this derivation. The simultaneous analysis and design

formulation is given by

M
min ZVV,(VJ
(Viy-- -, Var, i=1
Uy, ..., Up-—m,
Upr—m+1,--- U,
QAN —m+1, s CEAL

)"IJ'M—m-H""’”M)
subject to: g;(v;,u;) < O for i=1,....,.M—m
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g(vi,U;+Ra;) < O for i=M-m+1,....M

Ki(vijwu - F;,+BIXx = 0 for i=1,...,.M—m

~ : . — BT
Kz(v,)[—gl—}—[—ul} =0 for i=M-m+1,....M

K 0
M-m M
Z Biui + Z Bj(Uj-}-Rjaj) =0 (337)
=1 j=M-m+1

RI(F;-BfA) = 0 for i=M-m+1,....M

This expression is simplified by the following steps: 1) specify that u; for
i=1,...,M—mand U; fori = M—m+1,..., M (which are implicit functions
of v; and A) are known from solutions of structural-response subproblems (such
as problems (3.19) and (3.22)), and thus identically satisfy the first two equality
constraints in statement (3.37); and 2) for the remaining functions in (3.37),
replace g;, u;, and U; with their first-order Taylor series approximations about
the point (v;, a;, A). The design variables for the structural-sizing subproblem
are given by xg = (vi,---, VM, ®ar—m+1,---, 0, A). These simplifications

reduce statement (3.37) to the following structural-sizing subproblem

M
min ZWi(Vi)
X0 = (Vi - VM, il
QA i1y - QM A)
subject to: vg <v; <vY for i=1,...,.M
it i — V; A=) < fi =1,...,.M—
g+(9Vi/\(v v,)-i—a)‘w( Ai) <0 for i m
og; 0g;
g+ 5 \ (vi —v{) + E3Y (A=)
t [8 4 v,y
+3gi (i —a®) <0 for i=M-m+1,....M
8ai vi,A
M-m Ju ou;
Bi(u; 2 (vi— VD) + S A=)
; ( 8\’1 A 3)\ v, )




M oU;
+ B, (U, + 22| (v; = v?)
j=MX_:m+l J( T v, by ! ’
oU;
+ a/\J Y (A—Aj)+Rjaj) =0

RI(F;~BfA)=0 for i=M-m+1,..

where move limits v} and v¥ that are adjusted during the solution process
have been introduced to ensure convergence. In this subproblem, the design
variables X are coupling variables, and the compatibility constraints (the next
to last constraint shown in statement (3.38)) are coupling constraints. Be-
cause of the relatively small number of these coupling variables and coupling
constraints, a further decomposition of this structural-sizing subproblem into
smaller subproblems could be attempted using the method of Ritter ( [29], pp.
276-283), or the method of Ha [18]. However, no further decomposition of the

structural-sizing subproblem is undertaken in the present dissertation.

The structural-response subproblems, one for each substructure, deter-
mine the structural displacements, the design constraints, and their derivatives
with respect to the elements of xg. The design variables of the structural-
response subproblems for substructures i = 1,..., M —m are x; = (u;, v2, A;,
ou;/ovily , Oui/OAly, &, O8i/ Ovi|y . 08i/0Aly,). The necessary condition
form of these subproblems is

Kiui = Fi - BTA
V? = V;

A= A

g = gi(Vz‘, Ui)
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_ 8Kiui

K; — = .

Ju;
OA |, k

Bgi,j _ gi,j((vi + eziA'Ui,k)’ (ui + 8u,~/8vi|)\ eZ‘Avi,k)) — Gij

8Ui,k A - A'Ui‘k

Bg,-,j _ 9ij (Vi; (ui + Bui/é‘)‘[vi ek)‘A)\k)) - Gij

Ok |y, - A

fori=1,..., M —m. The design variables of the structural-response subprob-

lems for substructures i = M—m+1,..., M arex; = (U, v), A, o, 9U; /0vily ,

OU;/OAly, , i, 08:/0Vil) o, » O8i/OAly, 8gi/aalvh 2). The necessary

condition form of these subproblems is

. . — BT
K, [ﬂ] = {M}
Ky 0

0
vV, = V;
Al = A
0

g = g(viU;+Ria;)

[ 9U; -
_ | vy oK. [uT |07]"
K| ———| = - (3.40)
8u av;
| Vil |
F U | T
.| X, BT
K; 3 — = - 5
u.
| X, |
8g: ; 9 ((Vi + e Avig), (Ui + 0U;/0vi|y e Avi + Riai)) — Gij
8’1),'7}5 A,ai N A’Ui,k
99i ; G (Vz‘, (U + 3Ui/3>‘7|7vi ekAA/\k + R«iai)) — 9ij
My, AX




Y (Vi, (Ui + Ri(a; + e]?Aai,k))) ~ %ij
Vi Aoy

89i,j
8ai’k

fori =M-—m+1,..., M. Several features of the subproblems defined by state-
ments (3.39) and (3.40) should be noted. The design variables v?, a?, and A,
preserve the values of the structural-sizing variables at which the sensitivity
analyses are performed for use in the structural-sizing subproblem. The sen-
sitivities of the substructure displacements with respect to the sizing variables
v; are obtained by differentiating the first two equations in statement (3.33)
with respect to the sizing variables in the same manner that the sensitivities
in statement (3.10) are obtained. However, the computational effort is greatly
decreased when using substructures since both the order of the systems to be
solved and the number of right hand sides (equal to the number of substructure
sizing variables) to be formed and evaluated are reduced. The derivatives with
respect to the Lagrange multipliers A are obtained by differentiating the first
two equations in statement (3.33). The cost for performing these sensitivity
analyses is also nominal because the order of the equations to be solved is small,
the right hand side contains many zero columns (the nonzero columns are equal
in number to the number of degrees of freedom that are equivalenced in the
substructure), and this right hand side needs to be formed only once. Finally,
the constraint derivatives are found using finite differences that incorporate the
displacement sensitivity derivatives, but if g; ; is a stress or buckling constraint
then 9g; ;/ Bai,klvi’ ), does not need to be computed since it is identically zero.
As a point of interest, the approximate sensitivity derivative formulation of
the previous section (i.e., design formulation 3) could be utilized to replace

the sensitivity derivatives in statements (3.39) and (3.40) during the solution
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process to provide further computational gains. However, this approach is not

pursued in the present dissertation.



Chapter 4

Numerical Results for Equilibrium
Programming Structural-Design Formulations

The equilibrium programming design formulations derived in the previous chap-
ter appear to offer significant computational benefits, and these benefits are
verified by example problems in the present chapter. Since design formula-
tions 1 and 2 are essentially methods currently utilized in structural design,
only formulations 3 and 4 are investigated in the example problems. The re-
sults using these formulations are compared with results using a conventional
optimization approach which is actually an implementation of formulation 2.
In subsequent sections, the implementation of the analysis and optimization
algorithms is outlined, the example problems are described, and the results
of using formulations 3 and 4 on these example problems are compared with

results using the conventional approach.

4.1 Implementation of Numerical Algorithms

In this section, general implementation issues common to all the formulations
are discussed first. Then implementation details specific to formulations 3 and

4 are described.
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4.1.1 General Implementation Issues

For practical structural-design problems, an equilibrium-programming-based
solution algorithm should utilize existing finite element structural-analysis soft-
ware. The sensitivity derivative runstreams of [9] were modified, and several
FORTRAN routines were incorporated into the Engineering Analysis Language
(EAL) structural-analysis code [66] to solve the example design problems de-
scribed subsequently. Both a conventional solution approach and the equi-
librium programming design formulations are developed using this software
infrastructure. The sensitivity derivative runstreams utilize the semi-analytic
method, originally developed in [14], to compute the displacement sensitivity
derivatives. Derivatives of the stress and local buckling constraints are calcu-
lated using these displacement derivatives by a finite-difference approach. An
example of the finite-difference derivatives for general constraints is given by

the following expression:

dg _ g(v+ Avsel,u+0u/dvAv;e]) —g(v,u)

5o v (4.1)

The sequential solution approach described in a previous chapter is
the solution approach chosen for all the examples in the present dissertation,
but estimates of the speedup due to parallelization .of subproblems are given
for EP structural design formulation 4. In the sequential solution approach,
the structural-sizing subproblem and the structural-response subproblems are
solved alternately in a cyclical manner until the solutions from consecutive
cycles converge. In £he present dissertation, the nonlinear, structural-sizing
subproblem is replaced with a linear programming approximation, which is an

approach that has proven to be very robust. Thus, when results using a con-



ventional solution approach are discussed, this approach is sequential linear

programming (SLP).

The linear programming method utilized is based on the L; penalized
objective function method of [70]. In this reference, the objective function W

is replaced by a penalized objective function P given by
P=W+ K max(g;,0) (4.2)

where K is a constant that must be larger than the largest of all the Lagrange
multipliers of the constraint function vector g. In the penalized objective func-
tion method, the maximum function in (4.2) is implemented by using an ad-
ditional positive design variable as a slack variable for each constraint. Each
slack variable is subtracted from its constraint, and also used in place of the
maximum function in equation (4.2). This penalty method ensures that if no
feasible solution is possible, a solution is found that will minimize the mag-
nitude of the vector of violated constraints using the L, (i.e., the sum of the
absolute values) norm. To ensure that the linear programming approximation
of a subproblem has sufficient accuracy, move limits are used as additional side
constraints on the sizing variables. Move limits are easily incorporated within
the EP theory given in [68]. In the present dissertation, the move limits on
the design variables are computed by limiting the magnitude of the allowable
change to a factor times the design variable values. A move-limit-factor control
strategy is utilized in the example problems described subsequently. The move-
limit factor is typically initialized with a value of 10%. This factor is reduced
by half whenever a criterion indicates a reduction is necessary. The criterion

used in the present study stipulates that the move-limit factor is reduced when
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the penalized objective function (4.2), calculated exactly using the latest de-
sign information, increases from the previously calculated value. No method to
increase the move-limit factor, such as given in [70], is used. Thus, the result-
ing design history is somewhat sensitive to the value assumed for K. For very
large values of K, the optimization procedure favors remaining in the feasible
region over minimizing the objective function. In practice, using a very large
value of K leads to a premature reduction in the move limits during the design
process, and slows the convergence to the final design. In the reported results,
the value assumed for K is approximately twice the value of the largest La-
grange multiplier of the design constraints obtained during the design history.
The specific routine incorporated within EAL to solve the linear programming

problems is the sparse MINOS routine [33].

For some of the larger structural models studied, there can be thousands
of elements that must be examined for local stress and buckling constraints,
and these elements must be optimally sized. To reduce the number of design
variables, the design variable linking method of [39] is utilized. Specifically,
the finite element model is partitioned into regions, and within each region, all
the elements are sized by the same design variables. In addition, to reduce the
number of constraints, the local constraints within each region are “lumped”
using the Kresselmeier-Steinhauser cumulative constraint [27]. These reduc-

tion methods are utilized only for the civil transport problems described sub-

sequently.



4.1.2 Implementation Issues for Design Formulation 3

The flowchart in figure 4.1 illustrates a computer implementation of formula-
tion 3 for solving a structural-design problem. An iteration is represented by
a circuit through outermost loop in the figure. In the results to be described
subsequently, the iterations shown are described as either approximate or ex-
act. An approximate iteration is defined as a pass through the outer loop of
figure 4.1 utilizing the approximate sensitivity derivatives; an exact iteration
is defined as a pass through this outer loop utilizing exact sensitivity deriva-
tives. The solution method for formulation 3 is similar to that of conventional
approximation-based design methods, such as the SLP method that is used for
comparisons in the results section, except for the logic shown between the boxes
labeled “Exact Structural Response and Constraints” and “Structural-Sizing
Subproblem.” In a flowchart for a conventional approximation-based method,
the “No” branch of the “P Increased?” decision box would simply go to “Exact
Sensitivity Derivatives,” and the “Yes” branch would go to “Reset Design” and
then to “Reduce Move Limits.” Because the iterations utilizing approximate
sensitivity derivatives are so much less expensive that those utilizing exact sen-
sitivity derivatives, the most computationally efficient procedure would utilize
approximate constraint sensitivity derivatives as often as possible, and would
calculate exact constraint sensitivity derivatives only when the inaccuracy of
the approximate sensitivity derivatives inhibits convergence. This approach
is utilized in figure 4.1 where the criterion for choosing to update the sensi-
tivity derivatives instead of calculating exact sensitivity derivatives is based
on the behavior of the L; penalized objective function of the structural-sizing

subproblem.
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Figure 4.1: Flowchart of the solution procedure for structural design formula-
tion 3.



The penalized objective function is also utilized in the strategy for ad-
justing the move-limit-control factor in a variation of the approach described
in the previous subsection. If the value of P given by equation (4.2) (and com-
puted within the box labeled “Exact Structural Response and Constraints” in
figure 4.1) decreases after an approximate iteration, that iteration is accepted.
If the value of P increases after an approximate iteration, the iteration is re-
jected and exact sensitivity derivatives are calculated at the design conditions
existing at the beginning of the rejected approximate iteration. Thus, an exact
iteration begins. If the value of P increases after an exact iteration, the results
of the exact iteration are rejected, the move-limit factor is decreased by half,
and the exact iteration is restarted using the design conditions existing at the
beginning of the rejected exact iteration. The costs of a rejected iteration are
the expenses of calculating solutions to subproblems (3.14) and (3.15) where
no sensitivity calculations are performed for the latter subproblem. Both these
expenses are minor compared to the cost of an exact sensitivity analysis when

the structural-design problem is large.

4.1.3 Implementation Issues for Design Formulation 4

A flowchart for the implementation of design formulation 4 would be very sim-
ilar to that for a conventional approximation-based method as described in the
previous subsection. However, instead of performing analysis and sensitivity
calculations for a single structure, the analyses and sensitivity calculations for
n substructures are performed. The penalized objective function incorporates
only the inequality constraints, and no slack variables are used with the equal-

ity constraints in the structural-sizing subproblem. In the example problem
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for design formulation 4, the structural-response subproblems for the substruc-
tures are solved in sequence, although they could be solved in parallel. The
sublibrary capability of EAL is used extensively in solving the subproblems so
that the data associated with each subproblem are stored in separate libraries.
In addition, the ability to manipulate matrix data blocks and to add extra
terms to matrices is utilized in forming the augmented stiffness matrices. How-
ever, because the augmented stiffness matrices are nonpositive definite, some
experimentation in determining the order in which the degrees of freedom are
eliminated in the matrix factorization is necessary to avoid obtaining erroneous
singular matrix messages. Typically, the degrees of freedom for the vectors u;
would have to be eliminated before completing the elimination of the degrees

of freedom for the vectors U;.

4.2 Description of the Example Problems

The four example problems used to evaluate the equilibrium programming de-
sign formulations are described. The first three example problems are utilized
only with design formulation 3, and the final example problem is used only with
design formulation 4. The first example problem is the common ten-bar-truss
weight optimization problem that is described in several references. The second
example problem is a more complex high-speed transport wing weight optimiza-
tion problem, and the third example problem is the weight optimization of a
half-symmetric model for an entire high-speed transport vehicle. The use of
updated sensitivity derivatives on the first two example problems has been in-
vestigated by the author previously [52], but the solution method used for the

present results is an improvement over that of reference [52]. The constraints



for the first structural optimization example include stress, displacement and
minimum gauge constraints. The second and third example problems include
additional local buckling constraints, but the third example problem does not
include displacement constraints. This third example is the largest problem
investigated in the present dissertation both in terms of the number of design
variables and the number of displacement degrees o'f freedom. The fourth ex-
ample problem is the minimum weight design for a transmission tower that is
decomposed into substructures in two ways. This example problem uses only
stress and minimum gauge design constraints. These problems are described

in more detail in subsequent subsections.

4.2.1 Ten-Bar-Truss Example Problem

The minimum weight ten-bar-truss example problem is illustrated in figure
4.2. This problem is described in [19] (p. 244), but a brief description is
repeated here for completeness. The vertical and horizontal members are each
360 inches in length. The material properties assumed are those for aluminum
with a failure stress of 37,500 psi, a Young’s modulus of 107 psi, a Poisson’s
ratio of 0.3, and a density of 0.1 Ib/in3. Two 100,000-1b loads are applied, as
shown in figure 4.2, and the upper displacement limits 6; = 6, = 2.0 in. for
the displacement constraints are shown in the figure. The design variables are
the cross-sectional areas of the numbered bars in figure 4.2 which all have the
initial value 10 in? that yields an infeasible initial design. The minimum gauge
assumed is 0.1 in?, and the penalty coefficient K utilized for this problem is

10,000 Ib.
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Y 100,000 Ib Y 100,000 Ib

Figure 4.2: Schematic of geometry, loads, and displacement limits for the ten-
bar-truss example problem.

4.2.2 High-Speed Civil Transport Wing Example Problem

The second structural optimization example problem considered for EP structural-
design formulation 3 is the structural sizing of the wing for a proposed high-
speed civil transport concept described in [43]. The details defining this structural-
design problem are too numerous to list so only a summary of its features is
presented. The finite element model of the wing is shown in figure 4.3. The up-
per wing cover panels are removed in this figure to illustrate the rib and spar
web arrangement. The cover panels are titanium honeycomb-core sandwich
panels, and the shear webs are titanium sine-wave webs. The model is rela-
tively detailed with 1728 nodes (10,144 degrees of freedom) and 2447 elements.
A single load condition is analyzed in the structural response which represents
a 2.5g balanced, symmetric supersonic pull-up maneuver. There are 41 design
variables considered in the structural optimization. These design variables in-
clude facesheet thicknesses for the sandwich panels, honeycomb-core heights,

and sine-wave web gauges. The model uses a simple form of design variable
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Figure 4.3: Finite element model of high-speed civil transport wing with upper
cover panels removed.
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linking such that each sizing variable controls multiple elements. There are
212 design constraints that are cumulative constraints over groups of elements,
half of which are stress constraints and the remainder are local buckling con-
straints. The most critical constraint in this example is a 12-foot limit on
maximum deflection of the wing tip. The initial design utilized in this problem
is feasible. The penalty coefficient K utilized for this problem is 50,000 b, and
the value for the parameter in the Kreisselmeier-Steinhauser function [27] for

the cumulative constraints is taken to be 50.

4.2.3 High-Speed Transport Vehicle Example Problem

A third example problem considered is the structural optimization of a half-
symmetric model for an entire high-speed transport aircraft!. The finite el-
ement model of the vehicle is shown in figure 4.4. The cover panels and
webs are honeycomb-core sandwich panels having polymer-matrix composite
facesheets. The model is very large with 7301 nodes (43,806 degrees of free-
dom) and 14,293 elements. Two load conditions are analyzed for the structural
response: 2.5g and —1.0g balanced, symmetric supersonic maneuvers. This
model also uses design variable linking such that each sizing variable controls
multiple elements in a design region. There are 348 design variables considered
in the structural optimization. These design variables are the thickness of lam-
inates in three major directions (i.e., in directions oriented 0°, 90°, and +45°

relative to the primary load paths), and the honeycomb-core heights. The con-

straints in this example are minimum gauge side constraints, and constraints

IThe structural model for this example has been supplied by the Boeing Company and
the results are presented without absolute scales in this dissertation under the conditions of
a NASA Langley Property Loan Agreement, Loan Control Number 1922931.



Figure 4.4: Half-symmetric, finite element model of the high-speed transport
vehicle.

of strength and panel buckling for each element in the model. These strength
and buckling constraints are incorporated into 260 cumulative constraints us-
ing the Kreisselmeier-Steinhauser function [27], one for each design region (the
value of the parameter in the Kreisselmeier-Steinhauser function is 50). The
initial design utilized in this problem is feasible, and the normalized penalty

coefficient K utilized for this problem is 0.053.

4.2.4 Transmission Tower Example Problem

The fourth example problem is a transmission tower weight optimization. The
geometry of the tower, the loading conditions, and the decomposition into sub-
structures is shown in figure 4.5. Results are presented for a decomposition
into two substructures (denoted as 1 and 2), and a decomposition into four

substructures (denoted as I, II, III, and IV). This example is similar to the
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Figure 4.5: Schematic of the transmission tower example geometry, loading,
and division into substructures.



tower example described in [36], and because of the small number of interface
degrees of freedom, it is ideal for application of substructure techniques. The
tower is 634.5 inches tall, and there are 72 nodes and 279 bars in the model.
An independent design variable is used for each bar cross-sectional area. This
approach creates a problem with 279 design variables by ignoring the symme-
tries in bar cross-sectional areas that would be present in a practical design
(since the loads could be applied to either set of tower arms, and in either the
positive or negative y direction). The material chosen for this example problem
is aluminum with properties and minimum gauges as described previously. The
cross-sectional areas of the bars all have the initial value 10 in? that yields a
feasible initial design. Only stress inequality constraints are utilized for this

example problem, and the value of the penalty coefficient K used is 160 1b.

4.3 Results for the Example Problems

The results for the four example problems follow. The design history of the
penalized weight objective function, the weight objective function, and the most
critical constraint are presented for each example. Also, normalized CPU time
comparisons for each example problem are presented. The results for these

problems have been computed using two types of RISC workstations.

4.3.1 Ten-Bar-Truss Example Problem Results

The CPU time required for one approximate iteration for the ten-bar-truss
problem is approximately 16% of the time required for an exact iteration. This
CPU time for an approximate iteration is only 21% larger than the cost of

performing the structural response analysis and constraint evaluation alone.
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Therefore, efficiency benefits are expected using the approximate sensitivity

updates.

The convergence histories for the penalized objective function for 5 dif-
ferent cases are shown in figure 4.6. In this figure, results are shown using
formulation 3 with initial move-limit factors of 20%, 10%, and 5%. The move-
limit factors are denoted by MLy in this and subsequent figures. In addition,
results using a conventional SLP solution approach are shown for comparison
with initial move-limit factors of 20% and 10%. The SLP results are identical
to formulation 3 if all iterations are chosen to be exact. The solution procedure
is halted when the move-limit factor is reduced below 1%. Tile final penalized
objective functions and the final objective functions in all five design cases are
within a pound of each other. The horizontal line shown in figure 4.6 shows
a penalized objective function value 1% higher than the final value, and this
penalized objective function value is used as the criterion for convergence. Be-
cause the initial design is infeasible, in all cases there is a rapid decrease in the
penalized objective function as the violated constraints become satisfied. The
20%, 10%, and 5% cases using EP structural-design formulation 3 converge af-
ter 55, 92, and 101 iterations, respectively. This count of iterations is inflated
slightly because it includes a rejected approximate iteration before every exact
iteration after the first one. The 20% and 10% SLP cases converge at iterations
62 and 84, respectively. The large number of iterations required for all these
cases results from the simple linearization of the design constraints utilized in
the present approach. A more sophisticated constraint approximation scheme,
such as the use of a linearization in reciprocal variables, would decrease the

number of iterations to convergence, but at the cost of making the structural-
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Figure 4.6: Comparison of penalized objective function iteration histories for
the ten-bar truss with different initial move-limit-control factors using EP
structural-design formulation 3, and using a conventional SLP approach.

sizing problem a NLP problem instead of a LP problem. A common trend for
all these results is that there is an increase in the number of iterations required
as the initial move-limit factor is decreased. It is somewhat surprising that the
formulation 3 case with a 20% initial move-limit factor converged sooner than
the comparable SLP case, because, for most of the design history, the penalized
objective function is smaller for the latter case. This result occurs because the
move-limit factor for the SLP case remains too large for most of the latter part
of the iteration history, and it is expected that, in general, more iterations are
required for formulation 3 to converge than for the comparable SLP method.
The number of exact sensitivity calculations prior to convergence for the 20%,
10%, and 5% cases using formulation 3 are 17, 12, and 11, respectively. Thus,
using the number of exact sensitivity analyses as an indicator of how much

work is required to solve this problem, formulation 3 is a very efficient method.
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The iteration histories of the objective function and the displacement
constraint on §; are shown in figures 4.7 and 4.8, respectively. Only the cases
having initial move-limit factors of 20% and 10% are shown in these figures.
In all the cases shown in figure 4.7, the objective function value rises initially
because the optimizer is unable to satisfy the constraints in this initially in-
feasible design, as shown by figure 4.8, so it minimizes the penalized objective
function described previously. The objective function results for formulation
3 are typically larger than the SLP results during the initial iterations when
the move limits are large, but the results having the same initial move-limit
factor approach each other in the later iterations when the move limits have
been reduced. In figure 4.8, the constraints computed using formulation 3 ini-
tially show a more erratic iteration history than the comparable SLP results.
Also evident in this figure is the reduction in the magnitude of this erratic
constraint behavior, and the convergence to the constraint boundary as the

solution converges.

The number of iterations required for convergence, as shown in figure
4.6, is misleading because the approximate iterations of formulation 3 are so
much less expensive than the exact iterations. A more interesting view of these
same results is shown in figure 4.9 which uses a CPU time ordinate. The
CPU time shown is normalized by the CPU time required to complete the
first, exact iteration (this time is about 9 CPU seconds on a SGI IRIS 4D/35
workstation), so using this ordinate is nearly the same as the equivalent number
of exact iterations. (The first iteration has some additional set-up logic that
makes it longer than a typical exact iteration. The effect of set-up time is

noticeable for the ten-bar-truss problem since this problem is small.) Using a
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Figure 4.7: Comparison of objective function iteration histories for the ten-bar
truss with different initial move-limit-control factors using EP structural-design
formulation 3, and using a conventional SLP approach.
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Figure 4.8: Comparison of iteration histories for displacement constraint on é;
for the ten-bar truss with different initial move-limit-control factors using EP
structural-design formulation 3, and using a conventional SLP approach.
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Figure 4.9: Comparison of penalized objective function iteration histories us-
ing a CPU time ordinate for the ten-bar truss with different initial move-limit-
control factors using EP structural-design formulation 3, and using a conven-
tional SLP approach.

normalized CPU time ordinate, the 20%, 10%, and 5% cases using formulation 3
converge at ordinate values of 21.6, 22.3, and 22.5, respectively. The differences
between these convergence times are negligible even though the number of
iterations required for convergence is nearly doubled for a 5% initial move-limit
case compared to a 20% initial move-limit case. Because the updates to the
sensitivity derivatives are more accurate if determined from smaller changes
in the design variables, the cases with smaller initial move-limit factors can
utilize more approximate iterations before the degradation of the sensitivity
derivative accuracy causes an increase in the penalized objective function that
signals the need for an exact iteration. However, the smaller the initial move-
limit factor, the more iterations that are required to achieve convergence. Thus,

using formulation 3, there is a tradeoff in CPU time between the number of



approximate iterations that can be taken between exact iterations, and the
total number of iterations. In this case, the reduction in the number of required
exact sensitivity analyses, as the initial move-limit factor is decreased, nearly
balances the effect of the increased number of iterations on the CPU time

required for convergence.

The normalized CPU times required for convergence of the conventional
SLP cases for the 20% and 10% initial move-limit factors are 51.1 and 71.0,
respectively. In these cases, the benefits of starting with large initial move-
limit factors is apparent since all the sensitivity calculations have the same
computational cost. These results indicate that for this pa"rticula,r problem,
formulation 3 utilizes less CPU time than a conventional SLP formulation by

a factor of 2.5 to 3.5.

4.3.2 High-Speed Civil Transport Wing Example Problem Results

The CPU time required for one approximate iteration for the high-speed civil
transport wing problem is approximately 8.5% of the time required for an
exact iteration, and is only about 1% larger than the cost of performing the
structural response analysis and constraint evaluation alone. The former value
is a reduction of relative CPU time to nearly half of the value for the ten-
bar-truss problem, and the reduction is primarily due to the increase in the
number of design variables for the wing problem. The latter value indicates
that the constraint update and optimization steps in an approximate iteration
are minor in computational cost compared to the structural response analysis

and constraint evaluation.

The convergence histories for the penalized objective function for five

77



78

4} L iy
— Converged Penalized Objective Function

Penalized Objective Function, Ib

3 1 1 L 1 I 1 I 1 l ; | I ] J
2 3 4 5 6 789 2 3 4

1 10

Iteration Number

Figure 4.10: Comparison of penalized objective function iteration history for
the high-speed civil transport wing with different initial move-limit-control fac-
tors using EP structural-design formulation 3, and using a conventional SLP

approach.

different cases are shown in figure 4.10. In this figure, results are shown using
formulation 3 with initial move-limit factors of 20%, 10%, and 5%. Results
using a conventional SLP solution approach with initial move-limit factors of
20% and 10% are also shown for comparison. As in the ten-bar-truss problem,
the solution procedure is halted when the move-limit factor is reduced below
1%. However, there is greater variation in the final penalized objective function
among the design cases for this problem. In particular, the final value for the
20% case using formulation 3 is somewhat lower than the other cases. Because
of these variations, a penalized objective function value 1% higher than the
final value for the SLP case with a 10% initial move-limit factor is defined to
be the cﬂterioﬁ for convergence. This penalized objective function value is

the largest final value for the five cases, and is shown by the horizontal line



in figure 4.10. The 20%, 10%, and 5% cases using formulation 3 converge
after 20, 30, and 45 iterations, respectively. However, the final value for the
20% case is achieved at iteration 27 at an appreciably lower value than the
“converged” value. The 20% and 10% SLP cases converge at iterations 22
and 25, respectively. Both the number of iterations required for convergence,
and the increase in the number of iterations required for convergence as the
initial move-limit factor is decreased are much smaller than for the ten-bar-truss
problem. The penalized objective function history for SLP using a 20% initial
move-limit factor has lower values than the comparable formulation 3 history
except for a surprisingly rapid reduction in the penalized objective function for
formulation 3 beyond iteration 12. The more rapid convergence of formulation
3 during the final iterations than the SLP approach is believed to be a function
of the different solution paths in design space having no general significance.
The 10% initial move-limit-factor cases yield results that are consistent with
expectations. Here the solution paths of the formulation 3 and the SLP cases
follow each other closely for the initial iterations before they diverge due to an
accumulation of errors in the sensitivity derivatives. The penalized objective
function for the SLP case is less than the value using formulation 3 throughout
the design history after the paths diverge. The number of exact sensitivity
calculations required for convergence for the 20%, 10%, and 5% cases using
formulation 3 are six, seven, and eight, respectively. Thus, the ratio of the
number of approximate iterations to the number exact iterations increases from
2.3 for the 20% case to 4.6 for the 5% case because, as in the ten-bar-truss
problem, the accuracy of the updates is greater for the smaller initial move-

limit factors.
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The iteration histories of the objective function and the displacement
constraint on the wing tip deflection are shown in figure 4.11 for the cases
having an initial move-limit factor of 10%. As seen in the figure, the objective
function values generally decrease to the minimum weight design since the ini-
tial design is feasible. The objective function results show that formulation 3
and the SLP results agree well for the initial iterations, when the displacement
constraint is not active. Then from iterations 5 through 18, objective function
for formulation 3 decreases at a slightly lower average rate than the SLP objec-
tive function, partially due to the inclusion of results from rejected iterations.
The displacement constraint iteration history for formulation 3 shows initial
satisfaction of the constraint, a gross violation of the constraint for iterations 4
and 5, and a fairly close tracking of the constraint boundary for the final iter-
ations. Thus, the convergence of the objective function and the displacement
constraint are seen to be only moderately affected by the use of approximate

constraint sensitivity derivatives.

The penalized objective function results for this problem are shown in
figure 4.12 using a CPU time ordinate. The CPU time shown is normalized by
the CPU time required to complete the first, exact iteration (this time is about
1830 CPU seconds on a SGI IRIS 4D/35 workstation). Using the normalized
CPU time ordinate, the 20%, 10%, and 5% cases using EP structural-design
formulation 3 converge at ordinate values of 6.3, 9.6, and 11.6, respectivel’y.
Here, the effect of the initial move-limit factor on the CPU time favors the
large initial move-limit factors simply because there are fewer exact iterations
for those cases. The normalized CPU times required for convergence of the

conventional SLP cases for the 20% and 10% initial move-limit factors are 18.5
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Figure 4.11: Objective function and wing tip displacement constraint iteration
histories for the high-speed civil transport wing using EP structural-design
formulation 3, and using a conventional SLP approach.
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a CPU time ordinate for the high-speed civil transport wing with different
initial move-limit-control factors using EP structural-design formulation 3, and
using a conventional SLP approach.
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and 22.3, respectively. These results indicate that for this wing design problem,
formulation 3 requires less CPU time than conventional SLP formulations by

about a factor of 2.

4.3.3 High-Speed Transport Vehicle Example Problem Results

The CPU time required for one approximate iteration for the high-speed trans-
port vehicle problem is approximately 1.5% of the time required for an exact
iteration. Thus because of the large number of design variables, the cost of
an approximate iteration for this problem is insignificant compared to the cost
of an exact iteration. The cost of an approximate iteration is only about 2%
larger than the cost of performing the structural response analysis and con-
straint evaluation alone. This slight increase from the previous wing example
is possibly due to the larger number of design variables in the optimization
step for this problem, but may also be an effect of the use of different types of

computers for solving these two cases.

The convergence histories for the penalized objective function, normal-
ized by its initial value, for three different cases are shown in figure 4.13. All
results for this problem are obtained utilizing an initial move-limit factor of
10% because the computational cost of this problem prohibited investigation
of results for different initial move-limit factors. The three cases shown in the
figure are labeled formulation 3, modified formulation 3, and SLP. The need for
and the definition of the modified formulation 3 requires further explanation.
The final designs (i.e., the sizing-variable values when the move-limit factor is
reduced below 1%) for the formulation 3 and SLP cases are appreciably differ-

ent in figure 4.13. These differences in the final designs makes it difficult to
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Figure 4.13: Comparison of penalized objective function iteration history for
the high-speed transport vehicle using EP structural-design formulation 3, us-
ing modified EP structural-design formulation 3, and using a conventional SLP

approach.

compare the convergence characteristics of the two approaches. For instance,
when using a convergence definition as in the previous example problems (i.e.,
when the penalized objective function is at a value 1% higher than the final
value of the SLP case), the move-limit factor at convergence for the formula-
tion 3 results is 10% while the move-limit factor for SLP is 2.5%. In addition,
results to be shown subsequently demonstrate significant constraint violations
for formulation 3 when using this convergence definition. These difficulties in
comparing convergence characteristics are overcome by using a less conserva-
tive move-limit-factor reduction strategy, namely the modified formulation 3.
In the modified formulation 3, the move-limit-factor control of formulation 3 is
retained except that, if the first approximate iteration following an exact itera-

tion would increase the penalized objective function, the design is reset to the
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values existing before the iteration, and the approximate iteration is reI;ea,ted
with the move-limit factor reduced by half. Using the modified formulation
3, the move-limit factor is 1.25% and the constraints are better satisfied at
convergence. The final designs for the modified formulation 3 and SLP cases
are much closer, as demonstrated in figure 4.13, which allows meaningful direct

comparisons between these two methods.

In figure 4.13, formulation 3 “converges” in 26 iterations, modified for-
mulation 3 converges in 34 iterations, and the SLP case converges in 21 itera-
tions. However, as mentioned previously, the present definition of convergence
is not appropriate for formulation 3 which has a final value hfor the penalized
objective function that is much lower than the final value for the modified for-
mulation 3 and the SLP cases. The solution paths of the formulation 3 and the
modified formulation 3 cases follow each other closely for the initial iterations
before they diverge due to move limit reductions in the modified formulation.
The number of exact sensitivity calculations required for “convergence” for

formulation 3 is ten, and for convergence for modified formulation 3 is eleven.

The iteration histories of the objective function and the most critical
stress constraint (i.e., the constraint having the largest Lagrange multiplier)
are shown in figure 4.14 for the cases using EP structural-design formulation
3, using modified EP structural-design formulation 3, and using a conventional
SLP approach. As seen in figure 4.14, the objective function values for all three
cases agree prior to iteration 5, and beyond this iteration number the formula-
tion 3 objective function values follow a more erratic path due to errors in the
sensitivity derivatives that lead to rejected iterations. The two formulation 3

cases diverge from a common path at iteration 12 where the move-limit factor



for the modified formulation is decreased. The final value for the objective
function is appreciably lower for formulation 3 case indicating a different final,
and more optimal, design than the other cases. The crossover of the objec-
tive function values for the formulation 3 and the SLP cases that occurs near
iteration 18 in figure 4.14 does not occur for the penalized objective function
in figure 4.13 because the constraint histories using formulation 3 have larger
violations than the SLP case. These constraint violations for the formulation 3
results are due to the 10% move-limit factor being retained in all iterations up
to “convergence”, and are typified by the stress constraint in figure 4.14. The
stress constraints for modified formulation 3 and SLP in this ﬁgure have small,
but not insignificant, violations at the iteration numbers where the solutions
are said to be converged, and the violation is nearly 10% when the penalized
objective function for formulation 3 achieves the “converged” value in figure

4.13.

The penalized objective function results shown in figure 4.13 are re-
peated in figure 4.15 using a CPU time ordinate. The CPU time shown is
normalized by the CPU time required to complete the first, exact iteration
(this time is about 7200 CPU seconds on a Digital DEC 3000 Model 500 work-
station). Using the normalized CPU time ordinate, formulation 3 “converges”
at an ordinate value of 10.4, modified formulation 3 converges at 11.5, and
the conventional SLP approach converges at 19.1. Because of the insignificant
cost of the approximate iterations in the EP formulations for this problem, the
normalized CPU time essentially measures the cost of performing the exact
sensitivity analyses. In spite of the large difference in the number of iterations

to convergence, there are only small differences in computational effort between
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formulation 3 and the modified formulation 3 for this problem. Comparing the
modified formulation 3 and the SLP cases for this vehicle design problem, mod-
ified formulation 3 utilizes less CPU time than conventional SLP formulations

by a factor of nearly 1.7.

4.3.4 Transmission Tower Example Problem Results

In this subsection, results are presented for the minimum weight design of
the transmission tower problem using EP structural design formulation 4 with
decompositions into two and four substructures. Results from the SLP solution
for the entire tower structure are also presented. No move limits are utilized for
the interface force and the rigid-body mode design variables in the structural-
sizing subproblem for formulation 4 results. The initial move-limit factor for the
sizing design variables is 10% for all cases. There are only minor differences
between the iteration histories for the objective function and the penalized
objective function, so only the former is described. The iteration histories
for the objective function and the most critical stress constraint (i.e., for the
vertical member with maximum compression in the lowest bay) are shown in
figure 4.16 using the three partitions of the tower into substructures. The three
cases are indistinguishable in the figure, and convergence to a weight that is
1% larger than the final value of 1212 lb occurs by iteration 42. The most
critical stress constraint value increases to overshoot the constraint boundary
by iteration 9, but rapidly recovers to track closely the constraint boundary

thereafter.

The compatibility and orthogonality equality constraints in structural-

sizing subproblem (3.38) have been found to converge rapidly for this example
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Figure 4.16: Comparison of objective function and most critical stress con-
straint iteration history for the transmission tower example using EP structural-
design formulation 4 with two and four substructures, and using a conventional
SLP approach for the entire structure.

problem. After 2 iterations, the residuals of the interface displacement compat-
ibility constraints are below 0.026 in. for the two substructure partitioning, and
below 0.016 in. for the four substructure partitioning. There is some oscillation
in the value of these residuals during the solution process, but at convergence
the residuals are below 2.8 x 10~% in. and 1.7 x 10~ in. for the two and four
substructure cases, respectively. The orthogonality equality constraints in sub-

problem (3.38) are essentially satisfied after the first iteration, with residuals

of order 10~ Ib or smaller throughout the solution process.

A summary of the CPU timing results are shown in table 4.1. In this
table, the three columns denoted by 1 substr., 2 substr., and 4 substr. show
results for the SLP case, and the two and the four substructure cases using

formulation 4, respectively. The CPU times for analyses of the structural re-



| | 1 Substr. | 2 Substr. | 4 Substr. |

| Number Equality Constraints | 0 | 18 | 54 ||
Substructure ID All 1 I
Number Sizing Variables 279 140 82
Analysis CPU Time 0.0130 0.0050 0.0027
Sensitivity CPU Time 0.9822 0.2136 0.0721
Substructure ID 2 II
Number Sizing Variables 139 - 58
Analysis CPU Time 0.0051 0.0027
Sensitivity CPU Time 0.2120 0.0443
Substructure ID III
Number Sizing Variables ' 74
Analysis CPU Time 0.0033
Sensitivity CPU Time 0.0660
Substructure ID IV
Number Sizing Variables 65
Analysis CPU Time 0.0022
Sensitivity CPU Time 0.0485
Optimization CPU Time 0.0028 0.0025 0.0038
Misc. CPU Time 0.0020 0.0010 0.0037
Total Serial CPU Time 1.0000 0.4391 0.2495
Estimated Parallel CPU Time 1.0000 0.2206 0.0823

Table 4.1: Comparison of normalized CPU timing results for the transmission
tower example using EP structural-design formulation 4 with two and four
substructures, and using a conventional SLP approach for the entire structure.
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sponses that include evaluations of the substructure constraints, and for the
sensitivity derivative evaluations within each substructure are shown. CPU
times are also shown for solving structural-sizing subproblem (3.38), which op-
timizes the structural design and determines the coordination inputs, as well as
for performing miscellaneous computations. All CPU times are normalized by
the total CPU time required for the SLP case. The time for one iteration of the
SLP case is 2840 CPU seconds on a SGI IRIS 4D/35 workstation. The next to
last row shows the CPU time requirements for the solution of the tower example
problem using the serial approach of the present dissertation, and the last row
contains estimates of the CPU time requirement of the longest computational
thread if the substructure analysis and sensitivity derivative calculations were
done in parallel. These latter estimates simply combine the largest substructure
analysis and sensitivity CPU time values in table 4.1 with the miscellaneous

and optimization CPU time values.

As seen in table 4.1, even in the serial mode this example is well suited to
substructuring. Utilizing two substructures reduces the CPU time to less than
50% of the SLP value, and utilizing four substructures reduces the CPU time to
less than 25% of the SLP value. The parallel processing estimates reduce these
values to 22% and 8.2%, respectively. Thus, the computational benefits of the
substructuring formulation can be appreciable. The number of coordination
variables and the number of related coordination equality constraints increases
with the number of substructures, and this increase is reflected in the increase in
the optimization CPU time in going from two to four substructures. However,

the optimization CPU time for this problem is not large for any of the three

cases.



Chapter 5

Concluding Remarks

The overall goal of the present dissertation is the development of finite-element-
based, optimal, structural-sizing methods to solve large-scale problems more
efficiently than the current, commonly used methods. The approach taken
in the development of the new structural-sizing methods is to base them on
equilibrium programming (EP) formulations to take advantage of the theory
that exists in EP. A review of the commonly used methods indicated that the
most fruitful approach would be equilibrium programming formulations that
reduce the cost of sensitivity derivative calculations. So this approach was

utilized in the development of the formulations.

To acquaint the reader with equilibrium programming, background in-
formation was presented to describe the history of equilibrium programming, to
define an equilibrium programming problem, and to summarize conditions nec-
essary and sufficient for the existence of an equilibrium point. Properties that
distinguish an equilibrium point and an optimal point, and various solution

methodologies were also described.

Four equilibrium programming, structural-design formulations were then
developed. In developing these formulations, the implications of the necessary

conditions and the constraint qualification on solution existence were utilized.
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The first two formulations, namely formulations 1 and 2, are of interest be-
cause they are essentially the commonly used methods of fully stressed design,
and of using rapid, approximate analyses in a nonlinear-programming-based
structural design method. The former requires no sensitivity derivatives of the
design constraints, and the latter uses sensitivity derivatives sparingly to define
the approximate analyses. Thus, two commonly used design methods can be
viewed as EP formulations. Two additional EP structural design formulations,
formulations 3 and 4, are also derived in the present dissertation. In formula-
tion 3, additional EP subproblems define inexpensive, approximate sensitivity
derivative updates that make formulation 2 even more efficient. In formula-
tion 4, a decomposition into EP subproblems is derived in which the structural
response and sensitivity derivative calculations of individual substructures are
decoupled. For structures amenable to substructuring, the computational ef-
fort in calculating sensitivity derivatives in the substructure EP subproblems is
greatly reduced from what would be required to calculate them using a single
large structure. Thus, all four formulations faithfully follow the approach of
reducing either the number or the size of the sensitivity derivative calculations

required in the structural design.

Algorithms were developed to implement the two new EP formulations
by utilizing a commercial finite-element analysis package. Another algorithm
that is based on sequential linear programming (SLP) methods was used to
define a commonly used method that is used as a basis for comparison. The
algorithm for formulation 3 is dependent on the penalized objective function
for determining the acceptability of using sensitivity derivative updates, and

for determining the move-limit factor reductions. This algorithm was applied



to three example problems, ranging from a simple ten-bar-truss problem to a
large vehicle optimization problem. As expected, the results showed that the
computational cost of the exact sensitivity derivative calculations dominates
the overall cost, even for the small ten-bar-truss problem. The sensitivity
derivative updates were shown to be most effective on small problems, reducing
the computational cost of obtaining a converged solution by factors ranging
from 2.5 to 3.5. However, the sensitivity derivative updates also were useful on
a large problem with nearly 350 design variables, reducing the computational

cost by a factor of nearly 1.7.

An algorithm implementing the substructure-based, férmulation 4 was
also developed and applied to a transmission tower with nearly 280 design
variables. This example has relatively few interface nodes between the sub-
structures, and thus was an ideal example for this formulation. The iteration
history for the weight and the most critical constraint using this formulation
with two partitionings of the structure were indistinguishable from the results
using the SLP approach. This result was surprising since the interface compat-
ibility constraints are not necessarily satisfied until the design converges. The
CPU time for the sensitivity derivative calculations using the SLP approach
was over 98% of the total CPU time, and this time was reduced by over 75%
when using four substructures. Thus, the substructure-based formulation can
be very effective in reducing the computational time. An approach combining
sensitivity derivative updates with the substructure-based formulation was not
attempted, but may show excellent promise to reduce computational time by

combining the best features of both formulations.

The development of structural design formulations based on equilibrium
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programming, described herein, has been very successful. Although equilibrium
programming theory did not directly define the new formulations, the success
of their development owes much to the recognition and utilization of the con-
ditions for EP solution existence. Thus, EP is really only a framework that
is used as a setting for development of new design methods. The developer
still has the responsibility for identifying the sources of inefficiency in present
approaches, developing formulations that address these inefficiencies, and en-
suring that the formulations developed are at least locally optimal. Another
benefit of the equilibrium programming framework is that the developer gains
the new perspective of viewing the design process as consisting of a number
of interacting subproblems, each pursuing their own goals and in need of co-
ordination for development of satisfactory designs. Further enhancements to
computational efficiency by exploiting parallel solutions of these subproblems
are implied in the present dissertation, but no parallel implementations were
attempted. The work on asynchronous solution of equilibrium programming
problems cited in the literature may prove useful in exploiting parallel com-
putation. However, much additional work is necessary for the development of

viable parallel solution schemes.
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